Skip to main content
Log in

Refining Spin–Spin Distance Distributions in Complex Biological Systems Using Multi-Gaussian Monte Carlo Analysis

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Pulse dipolar electron paramagnetic resonance spectroscopy provides means of distance measurements in the range of ~ 1.5–10 nm between two spin labels tethered to a biological system. However, the extraction of distance distribution between spin labels is an ill-posed mathematical problem. The most common approach for obtaining distance distribution employs Tikhonov regularization method, where a regularization parameter characterizing the smoothness of distribution is introduced. However, in case of multi-modal distance distributions with peaks of different widths, the use of a single regularization parameter might lead to certain distortions of actual distribution shapes. Recently, a multi-Gaussian Monte Carlo approach was proposed for eliminating this drawback and verified for model biradicals [1]. In the present work, we for the first time test this approach on complicated biological systems exhibiting multi-modal distance distributions. We apply multi-Gaussian analysis to pulsed electron–electron double resonance data of supramolecular ribosomal complexes, where the 11-mer oligoribonucleotide (MR) bearing two nitroxide labels at its termini is used as a reporter. Calculated distance distributions reveal the same conformations of MR as those obtained by Tikhonov regularization, but feature the peaks having different widths, which leads to a better resolution in several cases. The advantages, complications, and further perspectives of application of Monte-Carlo-based multi-Gaussian approach to real biological systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.G. Matveeva, Y.V. Yushkova, S.V. Morozov, I.A. Grygor’Ev, S.A. Dzuba, Z. Phys. Chem. 231, 671 (2017)

    Article  Google Scholar 

  2. A. Milov, K. Salikhov, M. Shirov, Fiz. Tverd. Tela 23, 975 (1981)

    Google Scholar 

  3. A.D. Milov, A.B. Ponomarev, Y.D. Tsvetkov, Chem. Phys. Lett. 110, 67 (1984)

    Article  ADS  Google Scholar 

  4. M. Pannier, S. Veit, A. Godt, G. Jeschke, H. Spiess, J. Magn. Reson. 142, 331 (2000)

    Article  ADS  Google Scholar 

  5. K.M. Salikhov, I.T. Khairuzhdinov, R.B. Zaripov, Appl. Magn. Reson. 45, 573 (2014)

    Article  Google Scholar 

  6. K.M. Salikhov, I.T. Khairuzhdinov, Appl. Magn. Reson. 46, 67 (2014)

    Article  Google Scholar 

  7. S. Saxena, J.H. Freed, J. Chem. Phys. 107, 1317 (1997)

    Article  ADS  Google Scholar 

  8. S.K. Misra, J.H. Freed, in Multifrequency Electron Paramagnetic Resonance: Theory and Applications ed. by S.K. Misra (Wiley, Weinheim, 2011), pp. 545–588

  9. N. Kuznetsov, A. Milov, V. Koval, R. Samoilova, Y. Grishin, D. Knorre, Y. Tsvetkov, O. Fedorova, S. Dzuba, Phys. Chem. Chem. Phys. PCCP 11, 6826 (2009)

    Article  Google Scholar 

  10. N. Kuznetsov, A. Milov, N. Isaev, Y. Vorobjev, V. Koval, S. Dzuba, O. Fedorova, Y. Tsvetkov, Mol. BioSyst. 7, 2670 (2011)

    Article  Google Scholar 

  11. O. Schiemann, A. Weber, T.E. Edwards, T.F. Prisner, S.T. Sigurdsson, J. Am. Chem. Soc. 125, 3434 (2003)

    Article  Google Scholar 

  12. O. Schiemann, N. Piton, Y. Mu, G. Stock, J.W. Engels, T.F. Prisner, J. Am. Chem. Soc. 126, 5722 (2004)

    Article  Google Scholar 

  13. N. Piton, Y. Mu, G. Stock, T.F. Prisner, O. Schiemann, J.W. Engels, Nucleic Acids Res. 35, 3128 (2007)

    Article  Google Scholar 

  14. G.P.G. Grant, P.Z. Qin, Nucleic Acids Res. 35, e77 (2007)

    Article  Google Scholar 

  15. D. Grohmann, D. Klose, J.P. Klare, C.W.M. Kay, H.J. Steinhoff, F. Werner, J. Am. Chem. Soc. 132, 5954 (2010)

    Article  Google Scholar 

  16. G.Y. Shevelev, O.A. Krumkacheva, A.A. Lomzov, A.A. Kuzhelev, O.Y. Rogozhnikova, D.V. Trukhin, T.I. Troitskaya, V.M. Tormyshev, M.V. Fedin, D.V. Pyshnyi, E.G. Bagryanskaya, J. Am. Chem. Soc. 136, 9874 (2014)

    Article  Google Scholar 

  17. E.S. Babaylova, A.V. Ivanov, A.A. Malygin, M.A. Vorobjeva, A.G. Venyaminova, Y.F. Polienko, I.A. Kirilyuk, O.A. Krumkacheva, M.V. Fedin, G.G. Karpova, E.G. Bagryanskaya, Org. Biomol. Chem. 12, 3129 (2014)

    Article  Google Scholar 

  18. E.G. Bagryanskaya, O.A. Krumkacheva, M.V. Fedin, S.R.A. Marque, in Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions, Part A, ed. by P.Z. Qin, K. Warncke (Academic Press, London, 2015), pp. 365–396

  19. G.Y. Shevelev, O.A. Krumkacheva, A.A. Lomzov, A.A. Kuzhelev, D.V. Trukhin, O.Y. Rogozhnikova, V.M. Tormyshev, D.V. Pyshnyi, M.V. Fedin, E.G. Bagryanskaya, J. Phys. Chem. B 119, 13641 (2015)

    Article  Google Scholar 

  20. E.S. Babaylova, A.A. Malygin, A.A. Lomzov, D.V. Pyshnyi, M. Yulikov, G. Jeschke, O.A. Krumkacheva, M.V. Fedin, G.G. Karpova, E.G. Bagryanskaya, Nucleic Acids Res. 44, 7935 (2016)

    Article  Google Scholar 

  21. G. Jeschke, Annu. Rev. Phys. Chem. 63, 419 (2012)

    Article  ADS  Google Scholar 

  22. D. Goldfarb, Phys. Chem. Chem. Phys. 16, 9669 (2014)

    Article  Google Scholar 

  23. D. Banerjee, H. Yagi, T. Huber, G. Otting, D. Goldfarb, J. Phys. Chem. Lett. 3, 157–160 (2012)

    Article  Google Scholar 

  24. S. Ruthstein, M. Ji, P. Mehta, L. Jen-Jacobson, S. Saxena, J. Phys. Chem. B 117, 6227 (2013)

    Article  Google Scholar 

  25. O. Krumkacheva, E. Bagryanskaya, J. Magn. Reson. 280, 117 (2017)

    Article  ADS  Google Scholar 

  26. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473 (2006)

    Article  Google Scholar 

  27. S.A. Dzuba, J. Magn. Reson. 269, 113 (2016)

    Article  ADS  Google Scholar 

  28. A. Malygin, D. Graifer, M. Meschaninova, A. Venyaminova, I. Timofeev, A. Kuzhelev, O. Krumkacheva, M. Fedin, G. Karpova, E. Bagryanskaya, Nucleic Acids Res. (2017). https://doi.org/10.1093/nar/gkx1136

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation (project no. 14-14-00922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena G. Bagryanskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, I.O., Krumkacheva, O.A., Fedin, M.V. et al. Refining Spin–Spin Distance Distributions in Complex Biological Systems Using Multi-Gaussian Monte Carlo Analysis. Appl Magn Reson 49, 265–276 (2018). https://doi.org/10.1007/s00723-017-0965-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0965-y

Navigation