Skip to main content

Optimization Methods for the Design of Sensitive Surface ESR Resonators

Abstract

Electron spin resonance (ESR) is a powerful spectroscopic technique that has many applications in a wide variety of scientific fields, including chemistry, biology, materials science, and physics. One significant drawback of conventional ESR, however, is its relatively low sensitivity compared to other spectroscopic techniques. Arguably, the most dominant element affecting ESR sensitivity is the microwave resonator used to pick up the ESR signal of the spins. Traditionally, ESR mostly employs a limited set of resonator configurations (e.g., rectangular cavity, dielectric, or loop-gap resonator) that are suboptimal with respect to a wide range of samples. In principle, a smart resonator design can be used to optimize spin sensitivity for a given sample’s properties. In this work, we make use of an efficient Genetic Algorithm (GA) approach to numerically solve, analyze, and optimize a unique class of surface microresonators. The GA is based on a method of moments code, customized directly to render the complexity of a particular resonator’s geometries in our search. The main purposes of the algorithm are to routinely generate more sensitive microresonators, optimized for a predefined sample’s dimensions, and to study the functional relations between the devices’ resonance frequency, quality, and filling factors and their topology, in order to reach a rational optimal design. Preliminary results associated with new, unique, and sensitive surface microresonators are shown and analyzed. Such resonators are cheap and easy to produce on a mass scale with an arbitrary surface geometry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. A. Blank, J.H. Freed, Isr. J. Chem. 46(4), 423–438 (2006)

    Article  Google Scholar 

  2. Y. Twig, E. Suhovoy, A. Blank, Rev. Sci. Instrum. 81(10), 104703 (2010)

    ADS  Article  Google Scholar 

  3. A. Blank, C.R. Dunnam, P.P. Borbat, J.H. Freed, J. Magn. Reson. 165(1), 116–127 (2003)

    ADS  Article  Google Scholar 

  4. W. Wallace, R. Silsbee, Rev. Sci. Instrum. 62(7), 1754–1766 (1991)

    ADS  Article  Google Scholar 

  5. B. Johansson, S. Haraldson, L. Pettersson, O. Beckman, Rev. Sci. Instrum. 45(11), 1445–1447 (1974)

    ADS  Article  Google Scholar 

  6. C.P. Lin, M.K. Bowman, J.R. Norris, J. Magn. Reson. 65(2), 369–374 (1985)

    ADS  Google Scholar 

  7. N.I. Avdievich, G.J. Gerfen, J. Magn. Reson. 153(2), 178–185 (2001)

    ADS  Article  Google Scholar 

  8. R. Narkowicz, D. Suter, R. Stonies, J. Magn. Reson. 175(2), 275–284 (2005)

    ADS  Article  Google Scholar 

  9. O. Benningshof, H. Mohebbi, I. Taminiau, G. Miao, D. Cory, J. Magn. Reson. 230, 84–87 (2013)

    ADS  Article  Google Scholar 

  10. A. Bienfait, J. Pla, Y. Kubo, M. Stern, X. Zhou, C. Lo, C. Weis, T. Schenkel, M. Thewalt, D. Vion, D. Esteve, B. Julsgaard, K. Moelme, J.J.L. Morton, P. Bertet, Nat. Nanotechnol. 11(3), 253–257 (2016)

    ADS  Article  Google Scholar 

  11. H. Malissa, D. Schuster, A. Tyryshkin, A. Houck, S. Lyon, Rev. Sci. Instrum. 84(2), 025116 (2013)

    ADS  Article  Google Scholar 

  12. A. Imamoglu, Phys. Rev. Lett. 102(8), 083602 (2009)

    ADS  Article  Google Scholar 

  13. R.D. Britt, M.P. Klein, J. Magn. Reson. 74(3), 535–540 (1987)

    ADS  Google Scholar 

  14. W. Froncisz, J.S. Hyde, J. Magn. Reson. 47(3), 515–521 (1982)

    ADS  Google Scholar 

  15. J.S. Hyde, W. Froncisz, T. Oles, J. Magn. Reson. 82(2), 223–230 (1989)

    ADS  Google Scholar 

  16. Y. Twig, E. Dikarov, A. Blank, Mol. Phys. 111(18–19), 2674–2682 (2013)

    ADS  Article  Google Scholar 

  17. R.F. Harrington, Proc. IEEE 55(2), 136–149 (1967)

    Article  Google Scholar 

  18. K.-F. Man, K.S. Tang, S. Kwong, Genetic Algorithms: Concepts and Designs (Springer, London, 2012)

    MATH  Google Scholar 

  19. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Massachusetts, 1998)

    MATH  Google Scholar 

  20. R.L. Wood, W. Froncisz, J.S. Hyde, J. Magn. Reson. 58(2), 243–253 (1984)

    ADS  Google Scholar 

  21. R.E. Collin, Foundations for Microwave Engineering (Wiley, New York, 2007)

    Google Scholar 

  22. K.S. Yee, SIAM J. Appl. Math. 18(1), 77–83 (1970)

    MathSciNet  Article  Google Scholar 

  23. L. Shtirberg, Y. Twig, E. Dikarov, R. Halevy, M. Levit, A. Blank, Rev. Sci. Instrum. 82(4), 043708 (2011)

    ADS  Article  Google Scholar 

  24. A. Blank, Y. Twig, Y. Ishay, J. Magn. Reson. 280, 20–29 (2017)

    ADS  Article  Google Scholar 

  25. Y. Artzi, Y. Twig, A. Blank, Appl. Phys. Lett. 106(8), 084104 (2015)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grant #310/13 from the Israel Science Foundation (ISF), Grant #3-12372 from the Israeli Ministry of Science and Grant # 1352-302.5 from the German-Israeli Foundation (GIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Blank.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishay, Y., Blank, A. Optimization Methods for the Design of Sensitive Surface ESR Resonators. Appl Magn Reson 48, 1249–1262 (2017). https://doi.org/10.1007/s00723-017-0941-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0941-6