Skip to main content
Log in

Analysis of Saturation Recovery Amplitudes to Characterize Conformational Exchange in Spin-Labeled Proteins

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Analysis of saturation recovery data from spin-labeled proteins is extended to include the amplitudes in addition to the recovery rates for two-site exchange. It is shown that the recovery amplitudes depend strongly on the exchange rate between states as well as their populations and this dependence provides a simple criterion to identify exchange rates in the 10–1000 kHz range. Analysis of experimental SR relaxation curves via the uniform penalty (UPEN) method allows for reliable identification of single, double, or other multiple-component traces, and global fitting of a set of relaxation curves using both relaxation rates and amplitudes determined from the UPEN fits allows for the estimation of exchange rate in the above domain. The theory is tested on simple model systems, and applied to the determination of conformational exchange rates in spin-labeled mutants of T4 Lysozyme and intestinal fatty acid binding protein. Finally, an example of T 1-weighted spectral editing is provided for systems in the slow exchange limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Gunasekaran, B. Ma, R. Nussinov, Proteins 57, 433–443 (2004)

    Article  Google Scholar 

  2. V.J. Hilser, J.O. Wrabl, H.N. Motlagh, Annu. Rev. Biophys. 41, 585–609 (2012)

    Article  Google Scholar 

  3. L.C. James, P. Roversi, D.S. Tawfik, Science 299, 1362–1367 (2003)

    Article  Google Scholar 

  4. O. Keskin, BMC Struct. Biol. 7, 31 (2007)

    Article  Google Scholar 

  5. W. Zheng, N.P. Schafer, A. Davtyan, G.A. Papoian, P.G. Wolynes, Proc. Natl. Acad. Sci. USA 109, 19244–19249 (2012)

    Article  ADS  Google Scholar 

  6. Y. Huang, Z. Liu, J. Mol. Biol. 393, 1143–1159 (2009)

    Article  Google Scholar 

  7. K.B. Levin, O. Dym, S. Albeck, S. Magdassi, A.H. Keeble, C. Kleanthous, D.S. Tawfik, Nat. Struct. Mol. Biol. 16, 1049–1055 (2009)

    Article  Google Scholar 

  8. W.L. Hubbell, C.J. López, C. Altenbach, Z. Yang, Curr. Opin. Struct. Biol. 23, 725–733 (2013)

    Article  Google Scholar 

  9. L. Columbus, T. Kálai, J. Jekö, K. Hideg, W.L. Hubbell, Biochemistry 40, 3828–3846 (2001)

    Article  Google Scholar 

  10. L. Columbus, W.L. Hubbell, Biochemistry 43, 7273–7287 (2004)

    Article  Google Scholar 

  11. C.J. López, S. Oga, W.L. Hubbell, Biochemistry 51, 6568–6583 (2012)

    Article  Google Scholar 

  12. M.D. Bridges, K. Hideg, W.L. Hubbell, Appl. Magn. Reson. 37, 363–390 (2010)

    Article  Google Scholar 

  13. M.R. Fleissner, M.D. Bridges, E.K. Brooks, D. Cascio, T. Kálai, K. Hideg, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 108, 16241–16246 (2011)

    Article  ADS  Google Scholar 

  14. O.F. Lange, N.-A. Lakomek, C. Farès, G.F. Schröder, K.F.A. Walter, S. Becker, J. Meiler, H. Grubmüller, C. Griesinger, B.L. de Groot, Science 320, 1471–1475 (2008)

    Article  ADS  Google Scholar 

  15. M. Huisjen, J.S. Hyde, Rev. Sci. Instrum. 45, 669–675 (1974)

    Article  ADS  Google Scholar 

  16. P.W. Percival, J.S. Hyde, Rev. Sci. Instrum. 46, 1522–1529 (1975)

    Article  ADS  Google Scholar 

  17. H. Sato, S.E. Bottle, J.P. Blinco, A.S. Micallef, G.R. Eaton, S.S. Eaton, J. Magn. Reson. 191, 66–77 (2008)

    Article  ADS  Google Scholar 

  18. L.I. Horvath, P.J. Brophy, D. Marsh, J. Magn. Reson. Ser. B 105, 120–128 (1994)

    Article  Google Scholar 

  19. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 132, 65–77 (1998)

    Article  ADS  Google Scholar 

  20. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 147, 273–285 (2000)

    Article  ADS  Google Scholar 

  21. G.C. Borgia, R.J.S. Brown, P. Fantazzini, Magn. Reson. Imaging 19, 473–475 (2001)

    Article  Google Scholar 

  22. V. Bortolotti, R.J.S. Brown, P. Fantazzini, G. Landi, F. Zama, Inverse Probl. 33, 015003 (2016)

    Article  ADS  Google Scholar 

  23. S.S. Eaton, G.R. Eaton, Method Enzymol. 563, 37–58 (2015)

    Article  Google Scholar 

  24. J.-J. Yin, J.S. Hyde, J. Chem. Phys. 91, 6029–6035 (1989)

    Article  ADS  Google Scholar 

  25. Z. Yang, M.D. Bridges, M.T. Lerch, C. Altenbach, W.L. Hubbell, Method Enzymol. 564, 3–27 (2015)

    Article  Google Scholar 

  26. Z. Yang, M.D. Bridges, C.J. Lopez, O.Y. Rogozhnikova, D.V. Trukhin, E.K. Brooks, V. Tormyshev, H.J. Halpern, W.L. Hubbell, J. Magn. Reson. 269, 50–54 (2016)

    Article  ADS  Google Scholar 

  27. A. Kusumi, W.K. Subczynski, J.S. Hyde, Proc. Natl. Acad. Sci. USA 79, 1854–1858 (1982)

    Article  ADS  Google Scholar 

  28. J.M. Isas, R. Langen, H.T. Haigler, W.L. Hubbell, Biochemistry 41, 1464–1473 (2002)

    Article  Google Scholar 

  29. C. Altenbach, W. Froncisz, R. Hemker, H. Mchaourab, W.L. Hubbell, Biophys. J. 89, 2103–2112 (2005)

    Article  Google Scholar 

  30. Z. Guo, D. Cascio, K. Hideg, W.L. Hubbell, Protein Sci. 17, 228–239 (2008)

    Article  Google Scholar 

  31. Z. Guo, D. Cascio, K. Hideg, T. Kálái, W.L. Hubbell, Protein Sci. 16, 1069–1086 (2007)

    Article  Google Scholar 

  32. C.J. López, Z. Yang, C. Altenbach, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 110, E4306–E4315 (2013)

    Article  Google Scholar 

  33. C.J. López, M.R. Fleissner, Z. Guo, A.K. Kusnetzow, W.L. Hubbell, Protein Sci. 18, 1637–1652 (2009)

    Article  Google Scholar 

  34. K. Joon Oh, C. Altenbach, R.J. Collier, W. Hubbell, in Bacterial Toxins: Methods and Protocols, ed. by O. Holst (Humana Press, New York, 2000), pp. 147–169

  35. W.L. Hubbell, W. Froncisz, J.S. Hyde, Rev. Sci. Instrum. 58, 1879–1886 (1987)

    Article  ADS  Google Scholar 

  36. P.W. Percival, J.S. Hyde, J. Magn. Reson. 23, 249–257 (1976)

    ADS  Google Scholar 

  37. J.S. Hyde, in Time Domain Electron Spin Resonance, ed. by L. Kevan, R.N. Schwartz (Wiley, New York, 1979), pp. 1–30

  38. D.E. Budil, S. Lee, S. Saxena, J.H. Freed, J. Magn. Reson. Ser. A 120, 155–189 (1996)

    Article  ADS  Google Scholar 

  39. A.K. Kusnetzow, C. Altenbach, W.L. Hubbell, Biochemistry 45, 5538–5550 (2006)

    Article  Google Scholar 

  40. M.R. Fleissner, D. Cascio, W.L. Hubbell, Protein Sci. 18, 893–908 (2009)

    Article  Google Scholar 

  41. M.R. Fleissner, Ph.D. Thesis, University of California, Los Angeles, 2007

  42. M.E. Hodsdon, D.P. Cistola, Biochemistry 36, 2278–2290 (1997)

    Article  Google Scholar 

  43. J. McCoy, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 108, 1331–1336 (2011)

    Article  ADS  Google Scholar 

  44. C. Altenbach, W. Froncisz, J.S. Hyde, W.L. Hubbell, Biophys. J. 56, 1183–1191 (1989)

    Article  Google Scholar 

  45. J. Pyka, J. Ilnicki, C. Altenbach, W.L. Hubbell, W. Froncisz, Biophys. J. 89, 2059–2068 (2005)

    Article  Google Scholar 

  46. M.T. Lerch, J. Horwitz, J. McCoy, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 110, E4714–E4722 (2013)

    Article  ADS  Google Scholar 

  47. M.T. Lerch, Z. Yang, E.K. Brooks, W.L. Hubbell, Proc. Natl. Acad. Sci. USA 111, E1201–E1210 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health Grants EY05216, T33 EY07026 and 5P41EB001980, and the Jules Stein Professorship endowment. We are grateful to Profs. Sandra and Gareth Eaton (University of Denver) for providing a UPEN analysis program used early on in the study, and for helpful discussions regarding UPEN theory. We also thank Mark Fleissner, Carlos López, and Evan Brooks for graciously providing some of the spin-labeled mutants reported herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne L. Hubbell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridges, M.D., Yang, Z., Altenbach, C. et al. Analysis of Saturation Recovery Amplitudes to Characterize Conformational Exchange in Spin-Labeled Proteins. Appl Magn Reson 48, 1315–1340 (2017). https://doi.org/10.1007/s00723-017-0936-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0936-3

Navigation