Skip to main content
Log in

13C Dynamic Nuclear Polarization Using Derivatives of TEMPO Free Radical

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The nitroxide-based 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) free radical is widely used in 13C dynamic nuclear polarization (DNP) due to its relatively low cost, commercial availability, and effectiveness as polarizing agent. While a large number of TEMPO derivatives are available commercially, so far, only few have been tested for use in 13C DNP. In this study, we have tested and evaluated the 13C hyperpolarization efficiency of eight derivatives of TEMPO free radical with different side arms in the 4-position. In general, these TEMPO derivatives were found to have slight variations in efficiency as polarizing agents for DNP of 3 M [1-13C] acetate in 1:1 v/v ethanol:water at 3.35 T and 1.2 K. X-band electron paramagnetic resonance (EPR) spectroscopy revealed no significant differences in the spectral features among these TEMPO derivatives. 2H enrichment of the ethanol:water glassing matrix resulted in further improvement of the solid-state 13C DNP signals by factor of 2 to 2.5-fold with respect to the 13C DNP signal of non-deuterated DNP samples. These results suggest an interaction between the nuclear Zeeman reservoirs and the electron dipolar system via the thermal mixing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.W. Darbeau, Appl. Spectrosc. Rev. 41, 401 (2006)

    Article  ADS  Google Scholar 

  2. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Wotton-under-Edge, 1961)

    Google Scholar 

  3. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications (Wiley, New York, 2007)

    Google Scholar 

  4. A. Abragam, M. Goldman, Rep. Prog. Phys. 41, 395 (1978)

    Article  ADS  Google Scholar 

  5. A.B. Barnes, G.D. Paëpe, P.C.A. van der Wel, K.-N. Hu, C.-G. Joo, V.S. Bajaj, M.L. Mak-Jurkauskas, J.R. Sirigiri, J. Herzfeld, R.J. Temkin, R.G. Griffin, Appl. Magn. Reson. 34, 237 (2008)

    Article  Google Scholar 

  6. J.H. Ardenkjær-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA. 100, 10158 (2003)

    Article  ADS  Google Scholar 

  7. K.M. Brindle, S.E. Bohndiek, F.A. Gallagher, M.I. Kettunen, Magn. Reson. Med. 66, 505 (2011)

    Article  Google Scholar 

  8. J. Kurhanewicz, D.B. Vigneron, K. Brindle, E.Y. Chekmenev, A. Comment, C.H. Cunningham, R.J. DeBerardinis, G.G. Green, M.O. Leach, S.S. Rajan, R.R. Rizi, B.D. Ross, W.S. Warren, C.R. Malloy, Neoplasia N. Y. N 13, 81 (2011)

    Article  Google Scholar 

  9. S.E. Day, M.I. Kettunen, F.A. Gallagher, D.-E. Hu, M. Lerche, J. Wolber, K. Golman, J.H. Ardenkjaer-Larsen, K.M. Brindle, Nat. Med. 13, 1382 (2007)

    Article  Google Scholar 

  10. M.I.K.F.A. Gallagher, M.I. Kettunen, Prog. Nucl. Magn. Reson. Spectrosc. 55, 285 (2009)

    Article  Google Scholar 

  11. A. Bornet, S. Jannin, J. Magn. Reson. 264, 13 (2016)

    Article  ADS  Google Scholar 

  12. K.-N. Hu, Solid State Nucl. Magn. Reson. 40, 31 (2011)

    Article  ADS  Google Scholar 

  13. L. Lumata, M.E. Merritt, C.R. Malloy, A.D. Sherry, Z. Kovacs, J. Phys. Chem. A 116, 5129 (2012)

    Article  Google Scholar 

  14. J.H. Ardenkjaer-Larsen, S. Macholl, H. Jóhannesson, Appl. Magn. Reson. 34, 509 (2008)

    Article  Google Scholar 

  15. H. Jóhannesson, S. Macholl, J.H. Ardenkjaer-Larsen, J. Magn. Reson. 197, 167 (2009)

    Article  ADS  Google Scholar 

  16. J.H. Ardenkjaer-Larsen, J. Magn. Reson. 264, 3 (2016)

    Article  ADS  Google Scholar 

  17. L. Lumata, S.J. Ratnakar, A. Jindal, M. Merritt, A. Comment, C. Malloy, A.D. Sherry, Z. Kovacs, Chem. Eur. J. 17, 10825 (2011)

    Article  Google Scholar 

  18. Y. Zhang, P.J. Baker, L.B. Casabianca, J. Phys. Chem. B 120, 18 (2016)

    Article  Google Scholar 

  19. L. Lumata, M. Merritt, C. Khemtong, S.J. Ratnakar, J. van Tol, L. Yu, L. Song, Z. Kovacs, RSC Adv. 2, 12812 (2012)

    Article  Google Scholar 

  20. L.L. Lumata, M.E. Merritt, C.R. Malloy, A.D. Sherry, J. van Tol, L. Song, Z. Kovacs, J. Magn. Reson. 227, 14 (2013)

    Article  ADS  Google Scholar 

  21. L. Lumata, Z. Kovacs, A.D. Sherry, C. Malloy, S. Hill, J. van Tol, L. Yu, L. Song, M.E. Merritt, Phys. Chem. Chem. Phys. 15, 9800 (2013)

    Article  Google Scholar 

  22. J.W. Gordon, S.B. Fain, I.J. Rowland, Magn. Reson. Med. 68, 1949 (2012)

    Article  Google Scholar 

  23. A. Kiswandhi, P. Niedbalski, C. Parish, P. Kaur, A. Martins, L. Fidelino, C. Khemtong, L. Song, A.D. Sherry, L. Lumata. Phys. Chem. Chem. Phys. (2016)

  24. A. Kiswandhi, B. Lama, P. Niedbalski, M. Goderya, J. Long, L. Lumata, RSC Adv. 6, 38855 (2016)

    Article  Google Scholar 

  25. P. Niedbalski, C. Parish, A. Kiswandhi, L. Fidelino, C. Khemtong, Z. Hayati, L. Song, A. Martins, A.D. Sherry, L. Lumata, J. Chem. Phys. 146, 014303 (2017)

    Article  Google Scholar 

  26. A. Bornet, R. Melzi, S. Jannin, G. Bodenhausen, Appl. Magn. Reson. 43, 107 (2012)

    Article  Google Scholar 

  27. D. Banerjee, D. Shimon, A. Feintuch, S. Vega, D. Goldfarb, J. Magn. Reson. 230, 212 (2013)

    Article  ADS  Google Scholar 

  28. P. Niedbalski, C. Parish, A. Kiswandhi, L. Lumata, Magn. Reson. Chem. 54, 962 (2016)

    Article  Google Scholar 

  29. B. van den Brandt, F. Kurdzesau. J. Phys. Appl. Phys. 41, (2008)

  30. P. Miéville, P. Ahuja, R. Sarkar, S. Jannin, P.R. Vasos, S. Gerber-Lemaire, M. Mishkovsky, A. Comment, R. Gruetter, O. Ouari, P. Tordo, G. Bodenhausen, Angew. Chem. 122, 6318 (2010)

    Article  Google Scholar 

  31. C. Song, K.-N. Hu, C.-G. Joo, T.M. Swager, R.G. Griffin, J. Am. Chem. Soc. 128, 11385 (2006)

    Article  Google Scholar 

  32. Y. Matsuki, T. Maly, O. Ouari, H. Karoui, F. LeMoigne, E. Rizzato, S. Lyubenova, J. Herzfeld, T. Prisner, P. Tordo, R.G. Griffin, Angew. Chem. 121, 5096 (2009)

    Article  Google Scholar 

  33. V.S. Bajaj, C.T. Farrar, M.K. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. Eléna, K.E. Kreischer, R.J. Temkin, R.G. Griffin, J. Magn. Reson. 160, 85 (2003)

    Article  ADS  Google Scholar 

  34. G. Liu, M. Levien, N. Karschin, G. Parigi, C. Luchinat, M. Bennati, Nat. Chem. 9, 676 (2017)

    Article  Google Scholar 

  35. M. Reese, M.-T. Türke, I. Tkach, G. Parigi, C. Luchinat, T. Marquardsen, A. Tavernier, P. Höfer, F. Engelke, C. Griesinger, M. Bennati, J. Am. Chem. Soc. 131, 15086 (2009)

    Article  Google Scholar 

  36. H. Kobayashi, T. Ueda, K. Miyakubo, T. Eguchi, A. Tani, Phys. Chem. Chem. Phys. 10, 1263 (2008)

    Article  Google Scholar 

  37. G.I. Likhtenshtein, J. Yamauchi, S. Nakatsuji, A.I. Smirnov, R. Tamura, Nitroxides: applications in chemistry, biomedicine, and materials science (Wiley, New York, 2008)

    Book  Google Scholar 

  38. J.S. Hyde, R.A. Strangeway, T.G. Camenisch, J.J. Ratke, W. Froncisz, J. Magn. Reson. San Diego Calif. 1997 (205), 93 (2010)

    Article  ADS  Google Scholar 

  39. A.T. Yordanov, K. Yamada, M.C. Krishna, J.B. Mitchell, E. Woller, M. Cloninger, M.W. Brechbiel, Angew. Chem. Int. Ed. 40, 2690 (2001)

    Article  Google Scholar 

  40. Ł. PuŁaski, G. Bartosz, J. Biochem. Biophys. Methods 33, 65 (1996)

    Article  Google Scholar 

  41. D.L. Marshall, M.L. Christian, G. Gryn’ova, M.L. Coote, P.J. Barker, S.J. Barker, Org. Biomol. Chem. 9, 4936 (2011)

    Article  Google Scholar 

  42. B. Brandt, E.I. Bunyatova, P. Hautle, J.A. Konter, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 526, 53 (2004)

    Article  ADS  Google Scholar 

  43. D.A. Hall, D.C. Maus, G.J. Gerfen, S.J. Inati, L.R. Becerra, F.W. Dahlquist, R.G. Griffin, Science 276, 930 (1997)

    Article  Google Scholar 

  44. P. Höfer, P. Carl, G. Guthausen, T. Prisner, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, Appl. Magn. Reson. 34, 393 (2008)

    Article  Google Scholar 

  45. L. Friesen-Waldner, A. Chen, W. Mander, T.J. Scholl, C.A. McKenzie, J. Magn. Reson. 223, 85 (2012)

    Article  ADS  Google Scholar 

  46. S.J. Nelson, J. Kurhanewicz, D.B. Vigneron, P.E.Z. Larson, A.L. Harzstark, M. Ferrone, M. van Criekinge, J.W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E.J. Small, P. Munster, V.K. Weinberg, J.H. Ardenkjaer-Larsen, A.P. Chen, R.E. Hurd, L.-I. Odegardstuen, F.J. Robb, J. Tropp, J.A. Murray, Sci. Transl. Med. 5, 198ra108 (2013)

    Article  Google Scholar 

  47. C. Harrison, C. Yang, A. Jindal, R.J. DeBerardinis, M.A. Hooshyar, M. Merritt, A.D. Sherry, C.R. Malloy, NMR Biomed. 25, 1286 (2012)

    Article  Google Scholar 

  48. A. Comment, K. Uffmann, S. Jannin, F. Kurdzesau, R.B. van Heeswijk, H. Frenkel, P. Hautle, J.A. Konter, B. van den Brandt, R. Gruetter, J.J. van der Klink, Proc. Intl. Soc. Mag. Reson. Med. 15, 369 (2007)

    Google Scholar 

  49. K. Saito, K. Takeshita, J.-I. Ueda, T. Ozawa, J. Pharm. Sci. 92, 275 (2003)

    Article  Google Scholar 

  50. S.R. Burks, M.A. Makowsky, Z.A. Yaffe, C. Hoggle, P. Tsai, S. Muralidharan, M.K. Bowman, J.P.Y. Kao, G.M. Rosen, J. Org. Chem. 75, 4737 (2010)

    Article  Google Scholar 

  51. L. Lumata, M.E. Merritt, Z. Kovacs, Phys. Chem. Chem. Phys. 15, 7032 (2013)

    Article  Google Scholar 

  52. J. Heckmann, W. Meyer, E. Radtke, G. Reicherz, S. Goertz, Phys. Rev. B 74, 134418 (2006)

    Article  ADS  Google Scholar 

  53. S.T. Goertz, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 526, 28 (2004)

    Article  ADS  Google Scholar 

  54. T. Maly, G.T. Debelouchina, V.S. Bajaj, K.-N. Hu, C.-G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)

    Article  ADS  Google Scholar 

  55. F. Kurdzesau, B. van den Brandt, A. Comment, P. Hautle, S. Jannin, J.J. van der Klink, J.A. Konter, J. Phys. Appl. Phys. 41, 155506 (2008)

    Article  ADS  Google Scholar 

  56. B. Lama, J.H.P. Collins, D. Downes, A.N. Smith, J.R. Long, NMR Biomed. 29, 226 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Department of Defense Grant Number W81XWH-14-1-0048 and the Robert A. Welch Foundation grant number AT-1877. All DNP experiments were performed at the Advanced Imaging Research Center (AIRC) at the University of Texas Southwestern Medical Center. The AIRC DNP facility is funded by the National Institutes of Health Grant Number 8P41-EB015908.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd Lumata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niedbalski, P., Parish, C., Wang, Q. et al. 13C Dynamic Nuclear Polarization Using Derivatives of TEMPO Free Radical. Appl Magn Reson 48, 933–942 (2017). https://doi.org/10.1007/s00723-017-0916-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0916-7

Navigation