Skip to main content
Log in

Broadband Excitation by Method of Double Sweep

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The paper describes the design of broadband excitation pulses in high resolution nuclear magnetic resonance (NMR) by method of double sweep. We first show the design of a pulse sequence that produces broadband excitation to the equator of Bloch sphere with phase linearly dispersed as frequency. We show how this linear dispersion can then be refocused by nesting free evolution between two adiabatic inversions (sweeps). We then show how this construction can be generalized to exciting arbitrary large bandwidths without increasing the peak rf-amplitude and by incorporating more adiabatic sweeps. Finally, we show how the basic design can then be modified to give a broadband x rotation over arbitrary large bandwidth and with limited rf-amplitude. Experimental excitation profiles for the residual HDO signal in a sample of \(99.5\%\) D\(_2\)0 are displayed as a function of resonance offset. Application of the excitation is shown for \(^{13}\)C excitation in a labelled sample of alanine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Freeman, S.P. Kempsell, M.H. Levitt, J. Magn. Reson. 38, 453–479 (1980)

    ADS  Google Scholar 

  2. M.H. Levitt, J. Magn. Reson. 48, 234–264 (1982)

    ADS  Google Scholar 

  3. M.H. Levitt, R.R. Ernst, J. Magn. Reson. 55, 247–254 (1983)

    ADS  Google Scholar 

  4. R. Tycko, H.M. Cho, E. Schneider, A. Pines, J. Magn. Reson. 61, 90–101 (1985)

    ADS  Google Scholar 

  5. M.H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986)

    Article  ADS  Google Scholar 

  6. A.J. Shaka, A. Pines, J. Magn. Reson. 71, 495–503 (1987)

    ADS  Google Scholar 

  7. J.-M. Böhlen, M. Rey, G. Bodenhausen, J. Magn. Reson. 84, 191–197 (1989)

    ADS  Google Scholar 

  8. J.-M. Böhlen, G. Bodenhausen, J. Magn. Reson., Ser. A 102, 293–301 (1993)

    Article  ADS  Google Scholar 

  9. D. Abramovich, S. Vega, J. Magn. Reson., Ser. A 105, 30–48 (1993)

    Article  ADS  Google Scholar 

  10. E. Kupce, R. Freeman, J. Magn. Reson., Ser. A 108, 268–273 (1994)

    Article  ADS  Google Scholar 

  11. K. Hallenga, G.M. Lippens, J. Biomol. NMR 5, 59–66 (1995)

    Article  Google Scholar 

  12. T.L. Hwang, P.C.M. van Zijl, M. Garwood, J. Magn. Reson. 124, 250–254 (1997)

    Article  ADS  Google Scholar 

  13. K.E. Cano, M.A. Smith, A.J. Shaka, J. Magn. Reson. 155, 131–139 (2002)

    Article  ADS  Google Scholar 

  14. J. Baum, R. Tycko, A. Pines, Phys. Rev. A 32, 3435–3447 (1985)

    Article  ADS  Google Scholar 

  15. T.E. Skinner, T.O. Reiss, B. Luy, N. Khaneja, S.J. Glaser, J. Magn. Reson. 163, 8–15 (2003)

    Article  ADS  Google Scholar 

  16. T.E. Skinner, K. Kobzar, B. Luy, M.R. Bendall, W. Bermel, N. Khaneja, S.J. Glaser, J. Magn. Reson. 179, 241 (2006)

    Article  ADS  Google Scholar 

  17. K. Kobzar, T.E. Skinner, N. Khaneja, S.J. Glaser, B. Luy, J. Magn. Reson. 194(1), 58–66 (2008)

    Article  ADS  Google Scholar 

  18. J.E. Power, M. Foroozandeh, R.W. Adams, M. Nilsson, S.R. Coombes, A.R. Phillips, G.A. Morris, Chem. Commun. (2016). doi:10.1039/c5cc10206e

  19. M.R.M. Koos, H. Feyrer, B. Luy, Magn. Reson. Chem. 53(11), 886–893 (2015)

    Article  Google Scholar 

  20. H. Arthanari, G. Wagner, N. Khaneja, J. Magn. Reson. 209(1), 8–18 (2011)

    Article  ADS  Google Scholar 

  21. P. Coote, H. Arthanari, T.Y. Yu, A. Natarajan, G. Wagner, N. Khaneja, J. Biomol. NMR 55(3), 291–302 (2013)

    Article  Google Scholar 

  22. N. Khaneja, A. Dubey, H.S. Atreya, J. Magn. Reson. 265, 117–128 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the HFNMR lab facility at IIT Bombay, funded by RIFC, IRCC, where the data was collected.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Khaneja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaneja, N., Kumar, A. Broadband Excitation by Method of Double Sweep. Appl Magn Reson 48, 771–782 (2017). https://doi.org/10.1007/s00723-017-0894-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0894-9

Keywords

Navigation