Applied Magnetic Resonance

, Volume 48, Issue 8, pp 795–804 | Cite as

Microwave Spin Frequency Comb Memory Protocol Controlled by Gradient Magnetic Pulses

  • K. I. GerasimovEmail author
  • S. A. Moiseev
  • R. B. Zaripov
Original Paper


We have demonstrated a combination of frequency comb spin-echo protocol in a conventional microwave pulsed electron spin resonance spectrometer with gradient pulses of the external magnetic field applied for on-demand retrieval of signal microwave pulses at the required moments of time. A natural high-finesse periodic structure was used as a carrier of stored information. The structure is made out of hyperfine lines of electron spin resonance of tetracyanoethylene anion radicals in toluene at room temperature. Herein, we have also observed that using the pulses of gradient magnetic field can increase the memory capacity. The experimental results demonstrated promising opportunities for controlling electron nuclear spin coherence, which could be useful for implementation of broadband microwave or optical-microwave noise free quantum memory protocols.



We thank Dr. V. I. Morozov for the sample with TCNE radicals in toluene solution and for useful discussions. We also thank Dr. F. F. Gubaidullin for a valuable discussion on using the sine shape of the gradient magnetic field for coherent control of spin coherence. This work was financially supported by the Russian Foundation for Basic Research project no. 15-42-02462 and the Grant of fundamental research of the Presidium of the Russian Academy of Sciences 1.26 \(\Pi\).


  1. 1.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photon. 3(12), 706 (2009). doi: 10.1038/nphoton.2009.231 ADSCrossRefGoogle Scholar
  2. 2.
    W. Tittel, M. Afzelius, T. Chaneliére, R. Cone, S. Kröll, S. Moiseev, M. Sellars, Laser Photon. Rev. 4(2), 244 (2009). doi: 10.1002/lpor.200810056 CrossRefGoogle Scholar
  3. 3.
    C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S.J. Dewhurst, N. Gisin, C.Y. Hu, F. Jelezko, S. Kröll, J.H. Müller, J. Nunn, E.S. Polzik, J.G. Rarity, H. De Riedmatten, W. Rosenfeld, A.J. Shields, N. Sköld, R.M. Stevenson, R. Thew, I.A. Walmsley, M.C. Weber, H. Weinfurter, J. Wrachtrup, R.J. Young, Eur. Phys. J. D 58(1), 1 (2010). doi: 10.1140/epjd/e2010-00103-y ADSCrossRefGoogle Scholar
  4. 4.
    F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, W. Tittel, J. Mod. Opt. 60(18), 1519 (2013). doi: 10.1080/09500340.2013.856482 ADSCrossRefGoogle Scholar
  5. 5.
    K. Heshami, D.G. England, P.C. Humphreys, P.J. Bustard, V.M. Acosta, J. Nunn, B.J. Sussman, J. Mod. Opt. 63(20), 2005 (2016). doi: 10.1080/09500340.2016.1148212 ADSCrossRefGoogle Scholar
  6. 6.
    M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 84(22), 5094 (2000). doi: 10.1103/PhysRevLett.84.5094 ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Moiseev, S. Kröll, Phys. Rev. Lett. 87(17), 173601 (2001). doi: 10.1103/PhysRevLett.87.173601 ADSCrossRefGoogle Scholar
  8. 8.
    M.P. Hedges, J.J. Longdell, Y. Li, M.J. Sellars, Nature 465, 1052 (2010). doi: 10.1038/nature09081 ADSCrossRefGoogle Scholar
  9. 9.
    G. Hétet, M. Hosseini, B.M. Sparkes, D. Oblak, P.K. Lam, B.C. Buchler, Opt. Lett. 33(20), 2323 (2008). doi: 10.1364/OL.33.002323 ADSCrossRefGoogle Scholar
  10. 10.
    M. Hosseini, G. Campbell, B.M. Sparkes, P.K. Lam, B.C. Buchler, Nat. Phys. 7(10), 794 (2011). doi: 10.1038/nphys2021 CrossRefGoogle Scholar
  11. 11.
    H. de Riedmatten, M. Afzelius, M.U. Staudt, C. Simon, N. Gisin, Nature 456(7223), 773 (2008). doi: 10.1038/nature07607 ADSCrossRefGoogle Scholar
  12. 12.
    M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, Phys. Rev. A 79(5), 052329 (2009). doi: 10.1103/PhysRevA.79.052329 ADSCrossRefGoogle Scholar
  13. 13.
    S.A. Moiseev, J.L. Le Gouët, J. Phys. B Atom. Mol. Opt. Phys. 45(12), 124003 (2012). doi: 10.1088/0953-4075/45/12/124003
  14. 14.
    E.S. Moiseev, S.A. Moiseev, Laser Phys. Lett. 14(1), 015202 (2017).
  15. 15.
    A.E. Kozhekin, K. Mølmer, E. Polzik, Phys. Rev. A 62(3), 033809 (2000). doi: 10.1103/PhysRevA.62.033809 ADSCrossRefGoogle Scholar
  16. 16.
    O.S. Mishina, D.V. Kupriyanov, J.H. Müller, E.S. Polzik, Phys. Rev. A 75(4), 042326 (2007). doi: 10.1103/PhysRevA.75.042326 ADSCrossRefGoogle Scholar
  17. 17.
    J. Nunn, I.A. Walmsley, M.G. Raymer, K. Surmacz, F.C. Waldermann, Z. Wang, D. Jaksch, Phys. Rev. A 75(1), 011401 (2007). doi: 10.1103/PhysRevA.75.011401 ADSCrossRefGoogle Scholar
  18. 18.
    J.L. Le Gouët, P.R. Berman, Phys. Rev. A 80(1), 012320 (2009). doi: 10.1103/PhysRevA.80.012320 ADSCrossRefGoogle Scholar
  19. 19.
    D.G. England, P.J. Bustard, J. Nunn, R. Lausten, B.J. Sussman, Phys. Rev. Lett. 111(24), 243601 (2013). doi: 10.1103/PhysRevLett.111.243601 ADSCrossRefGoogle Scholar
  20. 20.
    D.S. Ding, W. Zhang, Z.Y. Zhou, S. Shi, B.S. Shi, G.C. Guo, Nat. Photon. 9(5), 332 (2015). doi: 10.1038/nphoton.2015.43 ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Moiseev, Phys. Rev. A 83(1), 012307 (2011). doi: 10.1103/PhysRevA.83.012307 ADSCrossRefGoogle Scholar
  22. 22.
    V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, J.L.L. Gouët, New J. Phys. 13(9), 93031 (2011). doi: 10.1088/1367-2630/13/9/093031 CrossRefGoogle Scholar
  23. 23.
    M. Bonarota, J.L. Le Gouët, T. Chanelière, New J. Phys. 13(1), 013013 (2011). doi: 10.1088/1367-2630/13/1/013013 ADSCrossRefGoogle Scholar
  24. 24.
    C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, Nature 469(7331), 508 (2011). doi: 10.1038/nature09662 ADSCrossRefGoogle Scholar
  25. 25.
    E. Saglamyurek, N. Sinclair, J. Jin, J.A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, Nature 469(7331), 512 (2011). doi: 10.1038/nature09719 ADSCrossRefGoogle Scholar
  26. 26.
    C. Yuan, W. Zhang, Y. Huang, J. Peng, Eur. Phys. J. D 70(9), 185 (2016). doi: 10.1140/epjd/e2016-60662-3 ADSCrossRefGoogle Scholar
  27. 27.
    M. Sabooni, Q. Li, S. Kröll, L. Rippe, Phys. Rev. Lett. 110(13), 133604 (2013). doi: 10.1103/PhysRevLett.110.133604 ADSCrossRefGoogle Scholar
  28. 28.
    M. Afzelius, C. Simon, Phys. Rev. A 82(2), 022310 (2010). doi: 10.1103/PhysRevA.82.022310 ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Moiseev, S.N. Andrianov, F.F. Gubaidullin, Phys. Rev. A 82(2), 022311 (2010). doi: 10.1103/PhysRevA.82.022311 ADSCrossRefGoogle Scholar
  30. 30.
    P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, M. Afzelius, New J. Phys. 16(8), 083005 (2014). doi: 10.1088/1367-2630/16/8/083005 ADSCrossRefGoogle Scholar
  31. 31.
    S. Probst, H. Rotzinger, S. Wünsch, P. Jung, M. Jerger, M. Siegel, A.V. Ustinov, P.A. Bushev, Phys. Rev. Lett. 110(15), 157001 (2013). doi: 10.1103/PhysRevLett.110.157001 ADSCrossRefGoogle Scholar
  32. 32.
    D.O. Krimer, M. Zens, S. Putz, S. Rotter, Laser Photon. Rev. 10(6), 1023 (2016). doi: 10.1002/lpor.201600189 CrossRefGoogle Scholar
  33. 33.
    C. Grezes, B. Julsgaard, Y. Kubo, W.L. Ma, M. Stern, A. Bienfait, K. Nakamura, J. Isoya, S. Onoda, T. Ohshima, V. Jacques, D. Vion, D. Esteve, R.B. Liu, K. Mølmer, P. Bertet, Phys. Rev. A 92(2), 020301 (2015). doi: 10.1103/PhysRevA.92.020301 ADSCrossRefGoogle Scholar
  34. 34.
    S.A. Moiseev, F.F. Gubaidullin, R.S. Kirillov, R.R. Latypov, N.S. Perminov, K.V. Petrovnin, O.N. Sherstyukov, Phys. Rev. A 95(1), 012338 (2017). doi: 10.1103/PhysRevA.95.012338 ADSCrossRefGoogle Scholar
  35. 35.
    K.I. Gerasimov, S.A. Moiseev, V.I. Morosov, R.B. Zaripov, Phys. Rev. A 90(4), 042306 (2014). doi: 10.1103/PhysRevA.90.042306 ADSCrossRefGoogle Scholar
  36. 36.
    M. Gündoan, M. Mazzera, P.M. Ledingham, M. Cristiani, H. de Riedmatten, New J. Phys. 15(4), 045012 (2013). doi: 10.1088/1367-2630/15/4/045012 CrossRefGoogle Scholar
  37. 37.
    W.D. Phillips, J.C. Rowell, S.I. Weissman, J. Chem. Phys. 33(2), 626 (1960). doi: 10.1063/1.1731217 ADSCrossRefGoogle Scholar
  38. 38.
    K.I. Gerasimov, S.A. Moiseev, V.I. Morozov, R.B. Zaripov, in Proc. SPIE, vol. 9533, ed. by V.A. Andreev, V.A. Burdin, A.H. Sultanov, O.G. Morozov (2015), vol. 9533, p. 953310. doi: 10.1117/12.2185472

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • K. I. Gerasimov
    • 1
    • 2
    Email author
  • S. A. Moiseev
    • 1
    • 2
  • R. B. Zaripov
    • 1
    • 2
  1. 1.Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazanRussia
  2. 2.Kazan Quantum CenterKazan National Research Technical UniversityKazanRussia

Personalised recommendations