Applied Magnetic Resonance

, Volume 48, Issue 6, pp 559–569 | Cite as

Using Terahertz Waves to Identify the Presence of Goethite via Antiferromagnetic Resonance

  • S. G. Chou
  • P. E. Stutzman
  • V. Provenzano
  • R. D. McMichael
  • J. Surek
  • S. Wang
  • D. F. Plusquellic
  • E. J. Garboczi
Original Paper


Virtually every corrosion detection method reports only the presence of a material phase that denotes probable corrosion, not its spectral signature. A signature specific to the type of iron oxide corrosion product would not only confirm the presence of corrosion but also provide insight into the environment of its formation. To identify the unique spectral signature of a commonly occurring corrosion product, goethite (α-FeOOH), we performed high-resolution terahertz (THz) absorption loss measurements on a polycrystalline mineral sample of goethite, scanning from 0.045 to 1.5 THz. We report two distinct temperature-dependent absorption peaks that extend from 4.2 to 425 K. By combining X-ray diffraction and magnetic characterization on this large crystallite-sized goethite sample, we derived a Neél transition temperature of 435 K, below which the sample is antiferromagnetic. We interpret these absorption peaks as magnon transitions of the antiferromagnetic resonances, allowing precise identification of goethite, a common iron corrosion product and geological mineral, via two terahertz absorption peaks over this temperature range. This measurement technique has the potential for detecting iron-bearing oxides originating from corrosion occurring underneath layers of polymeric products and other protective coatings that can be easily penetrated by electromagnetic waves with frequencies on the order of 1 THz. Furthermore, the combined X-ray and magnetic characterization of this sample, which had a large crystallite size, also improved the previously established relationship between the Néel transition temperature and the inverse mean crystallite dimension in the [111] direction. Our results provide end-case peaks which, compared with goethite samples of smaller crystallite size and purity, will enable the extension of this non-destructive evaluation technique to real corrosion applications.


Hematite Corrosion Product Goethite Zone Edge Large Crystallite Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S. G. C. gratefully acknowledges useful discussions with J. R. Simpson. This article reflects the views of the author and should not be construed to represent FDA’s views or policies. The work was supported by the NIST Innovations in Measurement Science research program entitled “Detection of Corrosion in Steel-Reinforced Concrete by Antiferromagnetic Resonance”. All the authors would like to pay tribute to William Egelhoff (deceased) who was the originator of the idea of using AFMR detection of certain iron corrosion products as a means of detecting early corrosion of steel under protective layers.


  1. 1.
    R.M. Cornell, U. Schwertmann, The Iron Oxides, Structure, Properties, Reactions, Occurrences, and Uses (Wiley-VCH, Weinheim, 2003)Google Scholar
  2. 2.
    O. Ozdemir, D.J. Dunlop, Geophys. Res. Lett. 23(9), 921–924 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    F. Martin-Hernandez, M.M. Garcia-Hernandez, Geophys. J. Int. 181, 756–761 (2010)ADSGoogle Scholar
  4. 4.
    S.J. Oh, D. C. Cook, H. E. Townsend, Hyperfine Interact. 112(1–4), 59–66, 12 (1998)Google Scholar
  5. 5.
    K.E. Garcia, A.L. Morales, C.A. Barrero, J.M. Greneche, Corros. Sci. 48, 2813–2830 (2006)CrossRefGoogle Scholar
  6. 6.
    E. Zepeda-Alarcon, H. Nakotte, A.F. Gualtieri, G. King, K. Page, S.C. Vogel, H.-W. Wang, H.-R. Wenk, J. Appl. Crystallogr. 47, 1983–1991 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Szytula, A. Burewicz, Z. Dimitrijevic, S. Krasnicki, H. Rzany, J. Todorovic, A. Wanic, W. Wolski, Physica Status Solidi 26, 429–434 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    J.M.D. Coey, A. Barry, J.-M. Brotto, H. Rakoto, S. Brennan, W.N. Mussel, A. Collomb, D. Fruchart, J. Phys. Condens. Matter 7, 759–768 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    J.B. Forsyth, I.G. Hedley, C.E. Johnson, J. Phys. C 1, 179–187 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    S.G. Chou, P.E. Stutzman, S. Wang, E.J. Garboczi, W.F. Egelhoff, D.F. Plusquellic, J. Phys. Chem. C 116, 16161 (2012)CrossRefGoogle Scholar
  11. 11.
    V.S. Agarwala, P.L. Reed, S. Ahmad, in Proceedings of CORROSION 2000, 26–31 March (NACE International, Orlando, Florida, 2000)Google Scholar
  12. 12.
    D.J. Duquette, R.E. Schafrik, A.I. Asphahani, G.P. Bierwagen, D.P. Butt, G.S. Frankel, R.C. Newman, S.N. Rosenbloom, L.H. Schwartz, J.R. Scully, P.F. Tortorelli, D. Trejo, D.F. Untereker, M. Urquidi-Macdonald, Research Opportunities in Corrosion Science and Engineering (National Academies Press, Washington, DC, 2011)Google Scholar
  13. 13.
    G.H. Koch, M.P. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, Corrosion Cost and Preventive Strategies in the United States, Federal Highway Administration Report FHWA-RD-01-156, R315-01. (2002)
  14. 14.
    N. R. C. Committee on Research Opportunities in Corrosion Science and Engineering, Research Opportunities in Corrosion Science and Engineering (National Academy Press, Washington, DC, 2011)Google Scholar
  15. 15.
    G.-L. Song, Front. Mater. Res. 1, 1–3 (2014)ADSGoogle Scholar
  16. 16.
    H.W. Song, V. Saraswathy, Int. J. Electrochem. Sci. 2, 1–28 (2007)Google Scholar
  17. 17.
    S. Bocquet, R.J. Pollard, J.D. Cashion, Phys. Rev. B 46(18), 11657–11664 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    S.K. Ghose, G.A. Waychunas, T.P. Trainor, P.J. Eng, Geochim. Cosmochim. Acta 74, 1943–1953 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A.Z. Hrynkiewicz, D.S. Kulgawczuk, K. Tomala, Phys. Lett. 17(2), 93–95 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    L. Néel, Rev. Mod. Phys. 25(1), 58–63 (1953)ADSCrossRefGoogle Scholar
  21. 21.
    I.G. Hedley, Z. Geophys. 37, 409–420 (1971)Google Scholar
  22. 22.
    G.W. van Oosterhout, in Proceedings International Conference on Magnetism, Nottingham, 1964 (Physical Society, London, 1965), pp. 529–532Google Scholar
  23. 23.
    R.D. Shannon, R.C. Shannon, O. Medenbach, R.X. Fischer, J. Phys. Chem. Ref. Data 31(4), 931–970 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    E.R. Brown, K.A. McIntosh, K.B. Nichols, C.L. Dennis, Appl. Phys. Lett. 66(3), 285–287 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    V. Provenzano, B. Baumgold, R.D. Shull, A.J. Shapiro, K. Koyama, K. Watanabe, N.K. Singh, K.G. Suresh, A.K. Nigam, S.K. Malik, J. Appl. Phys. 99(8), 08K906 (2006). doi: 10.1063/1.2159396 CrossRefGoogle Scholar
  26. 26.
    G.F. Dionne, Magnetic Oxides (Springer, New York, 2009)CrossRefGoogle Scholar
  27. 27.
    V.E. Dmitrienko, E.N. Ovhinnikova, J. Kokubun, K. Ishida, JETP Lett. 92(6), 383–387 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    P.J. Besser, A.H. Morrish, Phys. Lett. 13(4), 289–290 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    M.G. Cottam, D.J. Lockwood, Light Scattering in Magnetic Solids (Wiley, New York, 1986)Google Scholar
  30. 30.
    V.M. Naumenko, V.V. Eremenko, A.I. Maslennikov, A.V. Kovalenko, JETP Lett. 27(1), 17–20 (1978)ADSGoogle Scholar
  31. 31.
    M.J. Dekkers, Geophys. J. Int. 103, 233–250 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    D.F. Plusquellic, V. Provenzano, S.G. Chou, in MRS Proceedings, Boston, vol. 1296 (Cambridge University Press, Cambridge, 2010). doi: 10.1557/opl.2011.1443
  33. 33.
    B.N. Taylor, C.E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST Technical Note 1297 (NIST, Gaithersburg, 1994).

Copyright information

© Springer-Verlag Wien (outside the USA) 2017

Authors and Affiliations

  • S. G. Chou
    • 1
  • P. E. Stutzman
    • 2
  • V. Provenzano
    • 3
  • R. D. McMichael
    • 4
  • J. Surek
    • 5
  • S. Wang
    • 6
  • D. F. Plusquellic
    • 7
  • E. J. Garboczi
    • 8
  1. 1.Office of Pharmaceutical Quality, Center for Drug Evaluation and ResearchU. S. Food and Drug Administration, U. S. Department of Health and Human ServicesSilver SpringUSA
  2. 2.Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Material Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  4. 4.Center for Nanoscience and TechnologyNational Institute of Standards and TechnologyGaithersburgUSA
  5. 5.Communications Technology LaboratoryNational Institute of Standards and TechnologyBoulderUSA
  6. 6.Office of Material TechnologyMaryland Department of TransportationHanoverUSA
  7. 7.Physical Measurement LaboratoryNational Institute of Standards and TechnologyBoulderUSA
  8. 8.Material Measurement LaboratoryNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations