Skip to main content
Log in

Radiation Dosimetry Using Alanine and Electron Paramagnetic Resonance (EPR) Spectroscopy: A New Look at an Old Topic

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The detection and quantification by electron paramagnetic resonance (EPR) spectroscopy of stable radicals formed in alanine by exposure to γ-radiation is used as a secondary standard for radiation dosimetry measurements, even though the EPR signal is actually derived from >1 radical with different spectral properties. For high radiation doses, microwave power saturation and spectral linewidths are both dependent on the received dose, and result in non-linear calibration curves. Furthermore, using a high-sensitivity microwave cavity, the power at which EPR signal saturation commences is ~0.3–0.4 mW for samples with irradiation doses ≤10 kGy; these values are an order of magnitude lower than those normally used in alanine dosimetry. In addition, the central peak of the first derivative spectrum, the height of which is commonly used in dosimetry measurements, is the most susceptible to microwave power saturation. Therefore, for high-level dosimetry we now recommend that analyses be performed under non-saturating conditions, and that the spectral acquisition parameters should be determined with a standard irradiated to ≤10 kGy to eliminate any intensity problems associated with variable saturation characteristics. At low radiation doses, variations in spectral saturation characteristics are negligible, and partially saturating conditions along with modulation amplitudes much higher than those normally used can reliably produce improved signal-to-noise ratios and allow extension of the methodology to practical working limits of ~0.1–0.2 Gy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Izewska, G. Rajan, in Review of Radiation Oncology Physics, ed. by E.B. Podgorsak (IAEA, Vienna, 2005), p. 59

    Google Scholar 

  2. W.W. Bradshaw, D.G. Cadena, G.W. Crawford, H.A.W. Spetzler, Radiat. Res. 17, 11 (1962)

    Article  Google Scholar 

  3. D.F. Regulla, U. Deffner, Int. J. Appl. Radiat. Isot. 33, 1101 (1982)

    Article  Google Scholar 

  4. W.L. McLaughlin, Radiat. Prot. Dosim. 47, 255 (1993)

    Google Scholar 

  5. E. Sagstuen, E.O. Hole, S.R. Haugedal, W.H. Nelson, J. Phys. Chem. A 101, 9763 (1997)

    Article  Google Scholar 

  6. E. Pauwels, H. De Cooman, M. Waroquier, E.O. Hole, E. Sagstuen, Phys. Chem. Chem. Phys. 12, 8733 (2010)

    Article  Google Scholar 

  7. F. Callens, K. Van Laere, W. Mondelaers, P. Matthys, E. Boesman, Appl. Radiat. Isot. 47, 1241 (1996)

    Article  Google Scholar 

  8. E. Malinen, M.Z. Heydari, E. Sagstuen, E.O. Hole, Radiat. Res. 159, 23 (2003)

    Article  Google Scholar 

  9. C. Simion, J. Radioanal. Nucl. Chem. 275, 331 (2008)

    Article  Google Scholar 

  10. E. Pauwels, H. De Cooman, M. Waroquier, E.O. Hole, E. Sagstuen, Phys. Chem. Chem. Phys. 16, 2475 (2014)

    Article  Google Scholar 

  11. B. Schaeken, P. Scalliet, Appl. Radiat. Isot. 47, 1177 (1996)

    Article  Google Scholar 

  12. P.H.G. Sharpe, K. Rajendran, J.P. Sephton, Appl. Radiat. Isot. 47, 1171 (1996)

    Article  Google Scholar 

  13. F. Chen, D.T. Covas, O. Baffa, Appl. Radiat. Isot. 55, 13 (2001)

    Article  Google Scholar 

  14. F. Coninckx, H. Schönbacher, A. Bartolotta, S. Onori, A. Rosati, Int. J. Radiat. Appl. Instrum. A. Appl. Radiat. Isot. 40, 977 (1989)

    Article  Google Scholar 

  15. L. Miyagusku, F. Chen, A. Kuaye, C.J.C. Castilho, O. Baffa, Radiat. Meas. 42, 1222 (2007)

    Article  Google Scholar 

  16. A. Miller, P.H.G. Sharpe, Radiat. Phys. Chem. 59, 323 (2000)

    Article  ADS  Google Scholar 

  17. M. Anton, Appl. Radiat. Isot. 62, 779 (2005)

    Article  Google Scholar 

  18. T. Garcia, M. Lin, I. Pasquié, V. Lourenço, Radiat. Phys. Chem. 78, 782 (2009)

    Article  ADS  Google Scholar 

  19. F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds (Elsevier, Amsterdam, 1992), p. 15

    Google Scholar 

  20. M.W. Makinen, M.B. Yim, Proc. Nat. Acad. Sci. USA 78, 6621 (1981)

    Article  Google Scholar 

  21. F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds (Elsevier, Amsterdam, 1992), p. 13

    Google Scholar 

  22. M. Lin, T. Garcia, V. Lourenço, Y. Cui, Y.Z. Chen, F. Wang, Radiat. Meas. 45, 789 (2010)

    Article  Google Scholar 

  23. B.A. Goodman, N. Worasith, S. Ninlaphruk, W. Deng, in Proceedings of PACCON 2016, pp. 121–126

  24. F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds (Elsevier, Amsterdam, 1992), p. 1184

    Google Scholar 

  25. B. Ciesielski, L. Wielopolski, Radiat. Res. 140, 105 (1994)

    Article  Google Scholar 

  26. C.P. Poole Jr., Electron Spin Resonance, 2nd edn. (Dover Publications Inc., New York, 1983), p. 233

    Google Scholar 

  27. F.J. Ahlers, C.C.J. Schneider, Radiat. Prot. Dosim. 37, 117 (1991)

    Google Scholar 

  28. B.A. Goodman, S.M. Glidewell, J. Skilling, Free Radic. Res. 22, 337 (1995)

    Article  Google Scholar 

  29. S.M. Glidewell, B.A. Goodman, J. Skilling, in Maximum Entropy and Bayesian Methods, Fundamental Theories of Physics, vol. 70, ed. by J. Skilling, S. Sibisi (Springer, The Netherlands, 1996), p. 23

    Chapter  Google Scholar 

Download references

Acknowledgements

NW acknowledges the Rajamangala University of Technology Krungthep, Thailand for a 2-month travel grant to visit Guangxi University. Funding for the measurements in China was provided by the National Natural Science Foundations of China (Grant No. 11265002), and the Natural Science Foundations of Guangxi (Grant No. 2010GXNSFD013036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard A. Goodman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodman, B.A., Worasith, N., Ninlaphruk, S. et al. Radiation Dosimetry Using Alanine and Electron Paramagnetic Resonance (EPR) Spectroscopy: A New Look at an Old Topic. Appl Magn Reson 48, 155–173 (2017). https://doi.org/10.1007/s00723-016-0855-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0855-8

Keywords

Navigation