Skip to main content
Log in

Compact NMR Spectroscopy with Shift Reagents

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

To simplify a nuclear magnetic resonance (NMR) spectra of the targeted molecules, spin–spin decoupling and selective isotope substitution are two distinct approaches. A third one is to increase the applied magnetic field to increase the frequency dispersion of the chemical shift range. While this is a viable option for NMR spectrometers with superconducting magnets, the new generation of compact NMR spectrometers employs permanent magnets with limited variety in field strengths between one and two Tesla. The low-frequency dispersion at these field strengths gives rise to higher order spectra more frequently than at high field. These low-field spectra can be simplified using lanthanide shift reagents, which form complexes with the substrate molecule and increase the frequency dispersion. In this work, the use of lanthanide shift reagents is demonstrated by means of one-dimensional 1H and 19F as well as two-dimensional 19F-19F COSY experiments using a new-generation compact NMR spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1990)

    Google Scholar 

  2. S. Berger, S. Braun, 200 and More NMR Experiments, 3rd edn. (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  3. H. Friebolin, Basic One- and Two-Dimensional NMR Spectroscopy, 5th edn. (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  4. T.D.W. Claridge, High-Resolution NMR Techniques in Organic Chemistry (Elsevier, Amsterdam, 2009)

    Google Scholar 

  5. E. Boltegar, M. Petrinovic, M. Sedlacek, J. Phys. E. Sc. Instrum. 1, 323 (1968)

    Article  ADS  Google Scholar 

  6. B. Blümich, Trends Anal. Chem. (2016). doi:10.1016/j.trac.2015.12.012

    Google Scholar 

  7. B. Blümich, S. Haber-Pohlmeier, W. Zia, Compact NMR (de Gruyter, Berlin, 2014)

    Book  Google Scholar 

  8. B. Blümich, in Encyclopedia of Analytical Chemistry (Wiley, Chichester, 2016). doi:10.1002/9780470027318.a9458

  9. K. Singh, B. Blümich, Trends Anal. Chem. (2016). doi:10.1016/j.trac.2016.02.014

    Google Scholar 

  10. R.V. Ammon, R.D. Fischer, Angew. Chem. Int. Ed. 11, 675 (1972)

    Article  Google Scholar 

  11. R.E. Sievers, Nuclear Magnetic Resonance Shift Reagents (Academic Press, New York, 1973)

    Google Scholar 

  12. M.E. Kenney, J.E. Maskasky, J. Am. Chem. Soc. 93, 2060 (1971)

    Article  Google Scholar 

  13. C.D. Schaeffer Jr., C.H. Yoder, J. Chem. Educ. 62, 537 (1985)

    Article  Google Scholar 

  14. A.J. Dale, Acta. Chem. Scand. B. 30, 255 (1976)

    Article  Google Scholar 

  15. K.C. Yee, W.G. Bentrude, Tetrahedron Lett. 12, 2775 (1971)

    Article  Google Scholar 

  16. T.J. Wenzel, J.D. Wilcox, Chirality 15, 256 (2003)

    Article  Google Scholar 

  17. A.J. Rafalski, J. Barciszewski, M. Wiewiorowski, Tetrahedron Lett. 12, 2829 (1971)

    Article  Google Scholar 

  18. A.F. Cockerill, D.M. Rackham, Tetrahedron Lett. 11, 5149 (1970)

    Article  Google Scholar 

  19. E. De Boer, H. Van Willigen, Prog. Nucl. Magn. Reson. Spectrosc. 2, 111 (1967)

    Article  Google Scholar 

  20. A. Orzeszko, B. Kamińska, G. Orzeszko, B.J. Starościak, II Farmaco. 55, 619 (2000)

    Article  Google Scholar 

  21. A. Orzeszko, B. Kamińska, B.J. Starościak, II Farmaco. 57, 619 (2002)

    Article  Google Scholar 

  22. T. Ishizone, H. Tajima, S. Matsuoka, S. Nakahama, Tetrahedron Lett. 42, 8645 (2001)

    Article  Google Scholar 

  23. N. Kolocouris, G. Zoidis, G.B. Foscolos, G. Fytas, S.R. Prathalingham, J.M. Kelly, L. Naesens, E. De Clercq, Bioorg. Med. Chem. Lett. 17, 4358 (2007)

    Article  Google Scholar 

  24. C.C. Hinckley, J. Am. Chem. Soc. 91, 5160 (1969)

    Article  Google Scholar 

  25. G. Wahl Jr., M.R. Peterson Jr., J. Chem. Soc. D Chem. Commun. 18, 1167 (1970)

    Article  Google Scholar 

  26. M.R. Dintzner, C.R. Kinzie, K. Pulkrabek, A.F. Arena, J. Chem. Educ. 89, 262 (2012)

    Article  Google Scholar 

  27. I. Mamedov, R. Abbasoglu, M. Bayramov, A. Maharramov, Magn. Reson. Chem. 54, 315 (2016)

    Article  Google Scholar 

  28. M. T. Musser, in Cyclohexanol and Cyclohexanone, Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a08_217.pub2

  29. N. Akiya, P.E. Savage, Ind. Eng. Chem. Res. 40, 1822 (2001)

    Article  Google Scholar 

  30. J.K.M. Sanders, D.H. William, J. Chem. Soc. D Chem. Commun. 422 (1970)

  31. P.V. Demarco, T.K. Elzey, R.B. Lewis, J. Am. Chem. Soc. 92, 5734 (1970)

    Article  Google Scholar 

  32. J.T. Groves, M. Van Der Puy, Tetrahedron Lett. 16, 1949 (1975)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Master’s student Anne Nickel for her kind help in performing the experiments and the financial support from Deutsche Forschungsgemeinschaft (DFG Gerätezentrum Pro2NMR), a DFG supported, joint instrumental NMR facility BL 231/46-1 of RWTH Aachen University and KIT Karlsruhe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawarpal Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Blümich, B. Compact NMR Spectroscopy with Shift Reagents. Appl Magn Reson 47, 1135–1146 (2016). https://doi.org/10.1007/s00723-016-0821-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0821-5

Keywords

Navigation