Skip to main content
Log in

Microwave Magnetic Field Coupling with Nitrogen-Vacancy Center Ensembles in Diamond with High Homogeneity

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron spin resonance measurements with nitrogen-vacancy (NV) center ensembles in diamond are strongly dependent on a uniform microwave magnetic field. Three different types of microwave resonators are used and are well coupled with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. The magnitude and the uniformity of both the horizontal and vertical magnetic fields are extracted and analyzed within a \(1\times 1\times 0.5\) mm3 volume on a diamond sample surface, and the results indicate that the field homogeneity is up to 200 times better than that of the traditional copper wire microwave delivery model. The horizontal magnetic field magnitude homogeneity is better than 5 % over an area of 1 mm2 on the thin film diamond sample with NV ensembles. The average Rabi oscillation frequency is estimated to be 2.3 MHz per 1 W of microwave input power upon strong coherent coupling between the resonators and the spin ensembles. The effect of the nonuniform microwave magnetic field on the spin signal is also discussed. The approach used here will find widespread application in microwave coupling with spin ensembles in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Lenci, S. Barreiro, P. Valente, H. Failache, A. Lezama, J. Phys. B: Atomic Mol Opt. Phys. 45(21), 215401 (2012)

    Article  ADS  Google Scholar 

  2. J.J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim, J.J. Morton, F.A. Zwanenburg, D.N. Jamieson, A.S. Dzurak, A. Morello, Nature 496(7445), 334 (2013)

    Article  ADS  Google Scholar 

  3. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V. Dutt, A.S. Sorensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Nature 466(7307), 730 (2010)

    Article  ADS  Google Scholar 

  4. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C.A. Meriles, F. Reinhard, J. Wrachtrup, Science 339(6119), 561 (2013)

    Article  ADS  Google Scholar 

  5. F. Jelezko, J. Wrachtrup, Phys. Status Solidi A 203(13), 3207 (2006)

    Article  ADS  Google Scholar 

  6. P.L. Stanwix, L.M. Pham, J.R. Maze, D. Le Sage, T.K. Yeung, P. Cappellaro, P.R. Hemmer, A. Yacoby, M.D. Lukin, R.L. Walsworth, Phys. Rev. B 82(20), 201201 (2010)

    Article  ADS  Google Scholar 

  7. P. Kehayias, M. Mrózek, V.M. Acosta, A. Jarmola, D.S. Rudnicki, R. Folman, W. Gawlik, D. Budker, Phys. Rev. B 89(24), 245202 (2014)

    Article  ADS  Google Scholar 

  8. A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.F. Roch, V. Jacques, Phys. Rev. B 84(19), 195204 (2011)

    Article  ADS  Google Scholar 

  9. Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, P. Bergonzo, D. Esteve, Phys. Rev. Lett. 105(14), 140502 (2010)

    Article  ADS  Google Scholar 

  10. T. Duty, Physics 3, 80 (2010)

    Article  Google Scholar 

  11. F. Dolde, H. Fedder, M.W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Nat. Phys. 7(6), 459 (2011)

    Article  Google Scholar 

  12. R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter, K. Sandner, S. Schneider, M. Schramböck, G. Steinhauser, H. Ritsch, J. Schmiedmayer, J. Majer, Phys. Rev. Lett. 107(6), 060502 (2011)

    Article  ADS  Google Scholar 

  13. A. Waxman, Y. Schlussel, D. Groswasser, V.M. Acosta, L.-S. Bouchard, D. Budker, R. Folman, Phys. Rev. B 89(5), 054509 (2014)

    Article  ADS  Google Scholar 

  14. X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W.J. Munro, Y. Tokura, M.S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, K. Semba, Nature 478(7368), 221 (2011)

    Article  ADS  Google Scholar 

  15. A.J. Sigillito, H. Malissa, A.M. Tyryshkin, H. Riemann, N.V. Abrosimov, P. Becker, H.J. Pohl, M.L.W. Thewalt, K.M. Itoh, J.J.L. Morton, A.A. Houck, D.I. Schuster, S.A. Lyon, Appl. Phys. Lett. 104(22), 222407 (2014)

    Article  ADS  Google Scholar 

  16. O.W. Benningshof, H.R. Mohebbi, I.A. Taminiau, G.X. Miao, D.G. Cory, J. Magn. Reson. 230, 84 (2013)

    Article  ADS  Google Scholar 

  17. M.A. Matin, A.I. Sayeed, WSEAS Trans. Commun. 9(1), 63 (2010)

    Google Scholar 

  18. W.N. Hardy, L.A. Whitehead, Rev. Sci. Instrum. 52(2), 213 (1981)

    Article  ADS  Google Scholar 

  19. K. Aydin, A.O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, E. Ozbay, Phys. Rev. Lett. 102(23), 236804 (2009)

    Article  Google Scholar 

  20. J.J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim, J.J.L. Morton, F.A. Zwanenburg, D.N. Jamieson, A.S. Dzurak, A. Morello, Nature 496(7445), 334 (2013)

    Article  ADS  Google Scholar 

  21. K. Bayat, J. Choy, M.F. Baroughi, S. Meesala, M. Loncar, Nano Lett. 14(3), 1208 (2014)

    Article  ADS  Google Scholar 

  22. H. Malissa, D.I. Schuster, A.M. Tyryshkin, A.A. Houck, S.A. Lyon, Rev. Sci. Instrum. 84(2), 025116 (2013)

    Article  ADS  Google Scholar 

  23. J.J.L. Morton, A.M. Tyryshkin, A. Ardavan, K. Porfyrakis, S.A. Lyon, G.A.D. Briggs, Phys. Rev. A 71(1), 012332 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Zheng Tang, who sadly passed away, for providing great assistance in this work; he is in our deepest thoughts and prayers. This work is supported by the National Science Foundation of China under Grant Nos. (61403014, 61227902, 30427601, 61575014) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zhang, C., Xu, L. et al. Microwave Magnetic Field Coupling with Nitrogen-Vacancy Center Ensembles in Diamond with High Homogeneity. Appl Magn Reson 47, 589–599 (2016). https://doi.org/10.1007/s00723-016-0777-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0777-5

Keywords

Navigation