Skip to main content
Log in

An Analytical Method for the Deconvolution of Voigtian Profiles

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In spectroscopy, the spectral lineshape is often well described by a Voigtian function, which is the convolution of a Lorentzian function and a Gaussian function. A number of researchers have suggested ways to approximate the Voigtian profile. Herein, we report an analytical method to deconvolve it. Our method calculates the component Lorentzian and Gaussian linewidth of a Voigtian function by solving some polynomial equations in terms of even-order derivatives of the Voigtian function evaluated at the center. In the absence of noise, the Lorentzian and Gaussian linewidths obtained by the deconvolution of computer-generated Voigtian absorption spectra are accurate within an error of 0.01 %. While the accuracy of our new method is affected by noise, it can be improved by employing a Savitzky–Golay filter and/or a Lorentzian filter function. Our new method will be useful in magnetic resonance spectroscopy, optical spectroscopy, and other fields of science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.M. Portis, Phys. Rev. 91, 1071–1078 (1953)

    Article  ADS  Google Scholar 

  2. L. Petrakis, J. Chem. Educ. 44, 432–436 (1967)

    Article  Google Scholar 

  3. T.J. Silva, M.W. Keller, IEEE Trans. Magn. 46, 3555–3573 (2010)

    Article  ADS  Google Scholar 

  4. C. Young, J. Quant. Spectrosc. Radiat. Transfer 5, 549–552 (1965)

    Article  ADS  Google Scholar 

  5. B.H. Armstrong, J. Quant. Spectrosc. Radiat. Transfer 7, 61–88 (1967)

    Article  ADS  Google Scholar 

  6. E.E. Whiting, J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968)

    Article  ADS  Google Scholar 

  7. S.N. Dobryakov, Y.S. Lebedev, Sov. Phys. Dokl. 13, 873–875 (1969)

    ADS  Google Scholar 

  8. D.H. Wilkinson, Nucl. Instrum. Methods 95, 259–264 (1971)

    Article  ADS  Google Scholar 

  9. A.M. Stoneham, J. Phys. D Appl. Phys. 5, 670–672 (1972)

    Article  ADS  Google Scholar 

  10. G.K. Wertheim, M.A. Butler, K.W. West, D.N.E. Buchanan, Rev. Sci. Instrum. 45, 1369–1371 (1974)

    Article  ADS  Google Scholar 

  11. J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977)

    Article  ADS  Google Scholar 

  12. P. Martin, J. Puerta, Appl. Opt. 20, 259–263 (1981)

    Article  ADS  Google Scholar 

  13. S. Lee, A. Shetty, J. Chem. Phys. 83, 499–505 (1985)

    Article  ADS  Google Scholar 

  14. H. Jiménez-Domínguez, A. Cabral-Prieto, J. Magn. Reson. 93, 178–180 (1991)

    ADS  Google Scholar 

  15. H.J. Halpern, M. Peric, C. Yu, B.L. Bales, J. Magn. Reson. Ser. A 103, 13–22 (1993)

    Article  ADS  Google Scholar 

  16. K. Ramani, S. Ganapathy, R. Srinivasan, J. Magn. Reson. 24, 231–237 (1976)

    ADS  Google Scholar 

  17. J. Humlíček, J. Quant. Spectrosc. Radiat. Transfer 27, 437–444 (1982)

    Article  ADS  Google Scholar 

  18. A.I. Smirnov, R.L. Belford, J. Magn. Reson. Ser. A 113, 65–73 (1995)

    Article  ADS  Google Scholar 

  19. J.P. Grivet, J. Magn. Reson. 125, 102–106 (1997)

    Article  ADS  Google Scholar 

  20. S.D. Bruce, J. Higinbotham, I. Marshall, P.H. Beswick, J. Magn. Reson. 142, 57–63 (2000)

    Article  ADS  Google Scholar 

  21. D.W. Marquardt, SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  22. B.L. Bales, J. Magn. Reson. 38, 193–205 (1980)

    ADS  Google Scholar 

  23. B.L. Bales, J. Magn. Reson. 48, 418–430 (1982)

    ADS  Google Scholar 

  24. T. Ida, M. Ando, H. Toraya, J. Appl. Crystallogr. 33, 1311–1316 (2000)

    Article  Google Scholar 

  25. D. Nikolić, Z. Mijatović, S. Djurović, R. Kobilarov, N. Konjević, J. Quant. Spectrosc. Radiat. Transfer 70, 67–74 (2001)

    Article  ADS  Google Scholar 

  26. H.O. Di Rocco, D.I. Iriarte, J. Pomarico, Appl. Spectrosc. 55, 822–826 (2001)

    Article  ADS  Google Scholar 

  27. H.O. Di Rocco, J. Quant. Spectroc. Radiat. Transfer 92, 231–237 (2005)

    Article  ADS  Google Scholar 

  28. G.V. Vogman, U. Shumlak, Rev. Sci. Instrum. 82, 103504 (2011)

    Article  ADS  Google Scholar 

  29. T. Váczi, Appl. Spectrosc. 68, 1274–1278 (2014)

    Article  ADS  Google Scholar 

  30. B.-K. Shin, J. Magn. Reson. 249, 1–8 (2014)

    Article  ADS  Google Scholar 

  31. B.L. Bales, M. Peric, J. Phys. Chem. B 101, 8707–8716 (1997)

    Article  Google Scholar 

  32. B.L. Bales, M. Peric, J. Phys. Chem. A 106, 4846–4854 (2002)

    Article  Google Scholar 

  33. B.H. Robinson, C. Mailer, A.W. Reese, J. Magn. Reson. 138, 199–209 (1999)

    Article  ADS  Google Scholar 

  34. B.H. Robinson, C. Mailer, A.W. Reese, J. Magn. Reson. 138, 210–219 (1999)

    Article  ADS  Google Scholar 

  35. C. Tsallis, S.V.F. Lévy, A.M.C. Souza, R. Maynard, Phys. Rev. Lett. 75, 3589–3593 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  36. D.F. Howarth, J.A. Weil, Z. Zimpel, J. Magn. Reson. 161, 215–221 (2003)

    Article  ADS  Google Scholar 

  37. G.H. Cristea, T.L. Bohan, H.J. Stapleton, Phys. Rev. B 4, 2081–2084 (1971)

    Article  ADS  Google Scholar 

  38. D.L. Hùber, M.S. Seehra, Phys. Status Solidi b 74, 145–149 (1976)

    Article  ADS  Google Scholar 

  39. W. Finger, Phys. B 90, 251–258 (1977)

    Article  Google Scholar 

  40. A.I. Smirnov, R.B. Clarkson, R.L. Belford, J. Magn. Reson. Ser. B 111, 149–157 (1996)

    Article  Google Scholar 

  41. L. Yong, J. Harbridge, R.W. Quine, G.A. Rinard, S.S. Eaton, G.R. Eaton, C. Mailer, E. Barth, H.J. Halpern, J. Magn. Reson. 152, 156–161 (2001)

    Article  ADS  Google Scholar 

  42. B.L. Bales, M. Peric, M.T. Lamy-Freund, J. Magn. Reson. 132, 279–286 (1998)

    Article  ADS  Google Scholar 

  43. R.C. Barklie, M. Collins, S.R.P. Silva, Phys. Rev. B 61, 3546–3554 (2000)

    Article  ADS  Google Scholar 

  44. F. Schreier, J. Quant. Spectrosc. Radiat. Transfer 48, 743–762 (1992)

    Article  ADS  Google Scholar 

  45. R.J. Wells, J. Quant. Spectrosc. Radiat. Transfer 62, 29–48 (1999)

    Article  ADS  Google Scholar 

  46. K.L. Letchworth, D.C. Benner, J. Quant. Spectrosc. Radiat. Transfer 107, 173–192 (2007)

    Article  ADS  Google Scholar 

  47. B. Fornberg, Math. Comput. 51, 699–706 (1988)

    Article  MathSciNet  Google Scholar 

  48. A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 1627–1639 (1964)

    Article  ADS  Google Scholar 

  49. J. Steinier, Y. Termonia, J. Deltour, Anal. Chem. 44, 1906–1909 (1972)

    Article  Google Scholar 

  50. J.J. Windle, J. Magn. Reson. 45, 432–439 (1981)

    ADS  Google Scholar 

  51. A.I. Smirnov, J. Magn. Reson. 190, 154–159 (2008)

    Article  ADS  Google Scholar 

  52. P.L. Lee, Nucl. Instrum. Methods 144, 363–365 (1977)

    Article  ADS  Google Scholar 

  53. M. Peric, B.L. Bales, J. Magn. Reson. 169, 27–29 (2004)

    Article  ADS  Google Scholar 

  54. B.L. Bales, M. Meyer, S. Smith, M. Peric, J. Phys. Chem. A 113, 4930–4940 (2009)

    Article  Google Scholar 

  55. K. Ohno, J. Magn. Reson. 50, 145–150 (1982)

    ADS  Google Scholar 

  56. H. Lanshammar, J. Biomech. 15, 459–470 (1982)

    Article  Google Scholar 

  57. C.G. Enke, T.A. Nieman, Anal. Chem. 48, 705A–712A (1976)

    Article  Google Scholar 

  58. G. Horlick, Anal. Chem. 44, 943–947 (1972)

    Article  Google Scholar 

  59. K.R. Betty, G. Horlick, Appl. Spectrosc. 30, 23–27 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Brain Korea 21 for Leading Universities and Students. The author thanks Professor Jay Zweier for his support. The author is also grateful to Professor Sunil Saxena of the University of Pittsburgh for helpful suggestions regarding writing style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byong-kyu Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Bk. An Analytical Method for the Deconvolution of Voigtian Profiles. Appl Magn Reson 47, 429–452 (2016). https://doi.org/10.1007/s00723-016-0769-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0769-5

Keywords

Navigation