Skip to main content
Log in

Characterization of Flow Distribution in the Blood Compartment of Hollow Fiber Hemodialyzers with Contrast-Enhanced Spin Echo Magnetic Resonance Imaging

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An optimized flow distribution is quintessential for hemodialyzers in order to maximize the mass transfer efficiency through the diffusion process. It is important to observe the flow pattern and the concentration profile within the hemodialyzer when evaluating its function. Thus experimental knowledge which can evaluate the above two parameters plays a significant part in the optimization of these modules. The objective of the present study was to propose an experimental method for evaluating the flow distribution pattern in the blood compartment of a hollow-fiber hemodialyzer using a contrast-enhanced spin echo T 1-weighted magnetic resonance imaging (MRI) technique by tracing the concentration profiles and theoretical interpretation. Considering a parabolic flow profile inside the hollow fibers, the relative signal intensities along the axial direction of the five types of hemodialyzers were measured after injecting the Gd-DTPA contrast solution into the blood inlet. Although uniformly decreasing concentration profiles towards the outlet ports were observed during the analysis, the calculated mean and standard deviation (SD) of all average relative signal intensities indicated that there were variations in concentration distribution between the transverse sections of the same hemodialyzer. However, most of these variabilities were found to be within one SD of this mean value. These results suggested that the contrast-enhanced MRI technique can provide a significant tool for characterizing flow distribution in hemodialyzers, both qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.K. Poh, P.A. Hardy, Z. Liao, Z. Huang, W.R. Clark, D. Gao, J. Biomech. Eng. 125, 481 (2003)

    Article  Google Scholar 

  2. W. Ding, W. Li, S. Sun, X. Zhou, P.A. Hardy, S. Ahmad, D. Gao, Artif. Organs 39, E79 (2015)

    Article  Google Scholar 

  3. C. Ronco, N. Levin, A. Brendolan, F. Nalesso, D. Cruz, C. Ocampo, D. Kuang, M. Bonello, M. De Cal, V. Corradi, Z. Ricci, Hemodial. Int. 10, 380 (2006)

    Article  Google Scholar 

  4. Y. Sakai, S. Wada, H. Matsumoto, T. Suyama, O. Ohno, I. Anno, J. Artif. Organs 6, 197 (2003)

    Article  Google Scholar 

  5. T. Osuga, T. Obata, H. Ikehira, Magn. Reson. Imaging 22, 417 (2004)

    Article  Google Scholar 

  6. T. Osuga, T. Obata, H. Ikehira, Magn. Reson. Imaging 22, 413 (2004)

    Article  Google Scholar 

  7. A. Hirano, S. Kida, K. Yamamoto, K. Sakai, J. Artif. Organs 15, 168 (2012)

    Article  Google Scholar 

  8. C. Ronco, P.M. Ghezzi, G. Metry, M. Spittle, A. Brendolan, M. Rodighiero, M. Milan, M. Zanella, G. La Greca, N.W. Levin, Nephron 89, 243 (2001)

    Article  Google Scholar 

  9. C. Ronco, A. Brendolan, C. Crepaldi, M. Rodighiero, M. Scabardi, J. Am. Soc. Nephrol. 13(Suppl 1), S53 (2002)

    Google Scholar 

  10. C. Vander Velde, E.F. Leonard, Med. Biol. Eng. Comput. 23, 224 (1985)

    Article  Google Scholar 

  11. A. Frank, G. Lipscomb, M. Dennis, J. Memb. Sci. 175, 239 (2000)

    Article  Google Scholar 

  12. C. K. Poh, P. A. Hardy, Z. Liao, W. R. Clark, D. Gao, Membr. Sci. Technol. (2003). doi:10.1016/S0927-5193(03)80008-6

    Google Scholar 

  13. F. Gastaldon, A. Brendolan, C. Crepaldi, P. Frisone, S. Zamboni, V. D’Intini, S. Poulin, R. Hector, A. Granziero, K. Martins, R. Gellert, P. Inguaggiato, C. Ronco, Int. J. Artif. Organs 26, 105 (2003)

    Google Scholar 

  14. J. Zhang, D. L. Parker, J. K. Leypoldt, ASAIO J. 41, M678 (1995)

    Article  Google Scholar 

  15. G. Brix, H. Kolem, W. R. Nitz, M. Bock, A. Huppertz, C. J. Zech, O. Dietrich, in Magnetic Resonance Tomography, ed. by M. F. Reiser, W. Semmler, H. Hricak (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 3–167

  16. M. Nazarpoor, M. Poureisa, M.H. Daghighi, Iran. J. Radiol. 10, 27 (2012)

    Article  Google Scholar 

  17. T. Osuga, S. Han, Magn. Reson. Imaging 22, 1039 (2004)

    Article  Google Scholar 

  18. P.A. Hardy, C.K. Poh, Z. Liao, W.R. Clark, D. Gao, J. Memb. Sci. 204, 195 (2002)

    Article  Google Scholar 

  19. M. Gussoni, F. Greco, a Vezzoli, T. Osuga, L. Zetta, Magn. Reson. Imaging 19, 1311 (2001)

  20. A. Bjørnerud, in The Physics of Magnetic Resonance Imaging: FYS-KJM 4740 (University of Oslo, Department of Physics, 2008). http://www.uio.no/studier/emner/matnat/fys/FYS-KJM4740/v14/kompendium/compendium-mri-feb-2009.pdf. Accessed 19 Dec 2015

  21. C.F.G.C. Geraldes, S. Laurent, Contrast Media Mol. Imaging 4, 1 (2009)

    Article  Google Scholar 

  22. S. Lakshmanan, G. Pender, H. Haynes, W. Holmes, Int. J. Eng. Technol. 3, 457 (2014)

    Article  Google Scholar 

  23. J. Wang, K. Zhao, X. Shen, W. Zhang, S. Ji, Y. Song, X. Zhang, R. Rong, X. Wang, J. Mater. Chem. C 3, 12418 (2015)

    Article  Google Scholar 

  24. K. Leung, Molecular Imaging Contrast Agent Database (MICAD). (National Center for Biotechnology Information (US), 2009), http://www.ncbi.nlm.nih.gov/books/NBK26742/. Accessed 19 Dec 2015

  25. P.S. Tofts, MAGNETOM Flash 3, 30 (2010)

    Google Scholar 

  26. M.A. Busquets, J. Estelrich, M.J. Sánchez-Martín, Int. J. Nanomedicine 140, 1727 (2015)

    Article  Google Scholar 

  27. D.L. Buckley, G.J.M. Parker, in Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology, ed. by A. Jackson, D.L. Buckley, G.J.M. Parker (Springer Berlin Heidelberg, New York, 2005), pp. 69–79

  28. L. Bokacheva, H. Rusinek, Q. Chen, N. Oesingmann, C. Prince, M. Kaur, E. Kramer, V.S. Lee, Magn. Reson. Med. 57, 1012 (2007)

    Article  Google Scholar 

  29. A. K. Funai, Doctoral dissertation, The University of Michigan, 2011. http://hdl.handle.net/2027.42/86473. Accessed 19 Dec 2015

  30. L. I. Lanczi, M. Beresova, Eur. Congr. Radiolo. (2013). doi:10.1594/ecr2013/C-2436

    Google Scholar 

  31. X. Chen, G.W. Astary, H. Sepulveda, T.H. Mareci, M. Sarntinoranont, Magn. Reson. Imaging 26, 1433 (2008)

    Article  Google Scholar 

  32. K.H. Chang, D.G. Ra, M.H. Han, S.H. Cha, H.D. Kim, M.C. Han, Am. J. Neuroradiol. 15, 1413 (1994)

    Google Scholar 

  33. W. Ding, L. He, G. Zhao, H. Zhang, Z. Shu, D. Gao, Int. J. Heat Mass Transf. 47, 4849 (2004)

    Article  Google Scholar 

  34. K. Annan, Math. Comput. Model. 55, 1691 (2012)

    Article  MathSciNet  Google Scholar 

  35. S. Laukemper-Ostendorf, H.D. Lemke, P. Blümler, B. Blümich, J. Memb. Sci. 138, 287 (1998)

    Article  Google Scholar 

  36. J. Lu, W.-Q. Lu, Int. J. Heat Mass Transf. 53, 1844 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to highly appreciate and thank for the support given by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT: Japanese Government MONBUKAGAKUSHO Scholarship program) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimali Sanjeevani Weerakoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weerakoon, B.S., Osuga, T. Characterization of Flow Distribution in the Blood Compartment of Hollow Fiber Hemodialyzers with Contrast-Enhanced Spin Echo Magnetic Resonance Imaging. Appl Magn Reson 47, 453–469 (2016). https://doi.org/10.1007/s00723-016-0766-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0766-8

Keywords

Navigation