Skip to main content

Advertisement

Log in

An Adaptive Algorithm for Compressively Sampled MR Image Reconstruction Using Projections onto \(l_{p}\)-Ball

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Compressed sensing (CS) is an emerging technique for magnetic resonance imaging (MRI) reconstruction from randomly under-sampled k-space data. CS utilizes the reconstruction of MR images in the transform domain using any non-linear recovery algorithm. The missing data in the \(k\)-space are conventionally estimated based on the minimization of the objective function using \(l_{1} - l_{2}\) norms. In this paper, we propose a new CS-MRI approach called tangent-vector-based gradient algorithm for the reconstruction of compressively under-sampled MR images. The proposed method utilizes a unit-norm constraint adaptive algorithm for compressively sampled data. This algorithm has a simple design and has shown good convergence behavior. A comparison between the proposed algorithm and conjugate gradient (CG) is discussed. Quantitative analyses in terms of artifact power, normalized mean square error and peak signal-to-noise ratio are provided to illustrate the effectiveness of the proposed algorithm. In essence, the proposed algorithm improves the minimization of the quadratic cost function by imposing a sparsity inducing \(l_{p}\)-norm constraint. The results show that the proposed algorithm exploits the sparsity in the acquired under-sampled MRI data effectively and exhibits improved reconstruction results both qualitatively and quantitatively as compared to CG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.J. Larkman, R.G. Nunes, Phys. Med. Biol. 52(7), R15 (2007)

    Article  ADS  Google Scholar 

  2. M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  3. M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  4. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  5. D. Hoa, Ultra-high field MRI (3 teslas and more). https://www.imaios.com/en/e-Courses/e-MRI/High-field-MRI-3T

  6. H. Omer, Parallel MRI: tools and applications, PhD dissertation, Imperial College London (2012)

  7. H. Omer, R. Dickinson, Concepts Magn. Reson. Part A 38(2), 52–60 (2011)

    Article  Google Scholar 

  8. H. Omer, M. Qureshi, R.J. Dickinson, Concepts Magn. Reson. Part A 44(2), 67–73 (2015)

    Article  Google Scholar 

  9. D.L. Donoho, IEEE Trans. Inf. Theory 52(4), 1289 (2006)

  10. M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  11. M. Uecker, P. Lai, M.J. Murphy, P. Virtue, M. Elad, J.M. Pauly, M. Lustig, Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  12. A. Beck, M. Teboulle, SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  13. M.L. Chu, H.C. Chang, H.W. Chung, T.K. Truong, M.R. Bashir, N.K. Chen, Magn. Reson. Med. 74(5), 1336–1348 (2015)

  14. X. Yang, R. Hofmann, R. Dapp, T. van de Kamp, T.D.S. Rolo, X. Xiao, J. Moosmann, J. Kashef, R. Stotzka, Opt. Express 23(5), 5368–5387 (2015)

  15. T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  16. Z. Qin, D. Goldfarb, S. Ma, Optim. Methods Softw. 30(3), 594–615 (2015)

  17. Y.C. Eldar, G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University Press, New York, 2012)

  18. A. Florescu, E. Chouzenoux, J.C. Pesquet, P. Ciuciu, S. Ciochina, Signal Process. 103, 285–295 (2014)

    Article  Google Scholar 

  19. M. Zibulevsky, M. Elad, IEEE Signal Process. Mag. 27(3), 76–88 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.C. Douglas, S.-I. Amari, S.-Y. Kung, IEEE Trans. Signal Process. 48(6), 1843–1847 (2000)

    Article  ADS  Google Scholar 

  21. M. Elad, B. Matalon, J. Shtok, M. Zibulevsky, in Optical Engineering + Applications (International Society for Optics and Photonics, 2007), pp. 670102–670102

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Kaleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleem, M., Qureshi, M. & Omer, H. An Adaptive Algorithm for Compressively Sampled MR Image Reconstruction Using Projections onto \(l_{p}\)-Ball. Appl Magn Reson 47, 415–428 (2016). https://doi.org/10.1007/s00723-016-0761-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0761-0

Keywords

Navigation