Skip to main content
Log in

Compensation for Signal Voids Caused by Turbulent Flow in Stenotic Vessels at 7T MRI: A Preliminary Study

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An abnormal vascular structure such as a stenosis induces a turbulent flow that causes signal voids in MRA images. This study aimed to propose a new method to prevent signal voids in stenotic blood vessels in conventional 3D time-of-flight (TOF) MRA images. 2D local excitation radio frequency (2DRF) pulse sequence was used in 7T MRI, and the feasibility of using this technique for imaging abnormal and turbulent flow was evaluated. The images obtained using the sequence were compared with conventional TOF MRA image of patients with MCA stenosis. Compared to conventional TOF MRA images, the images obtained using 7T MRI with a 2DRF pulse sequence showed high signal intensity in vascular segments that were expected to be abnormal, such as the origins of perforating vessels such as lenticulostriate arteries which are branches of the proximal part of the middle cerebral artery. 2DRF pulse also obviously compensated for the signal void within the stenotic vessels in the patient. The conventional MRA technique is sensitive to a turbulent flow, which causes a loss of signal and overestimation of the stenosis. The method proposed in this study could provide clear images of vascular segments that are difficult to evaluate owing to a severe stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.C. Gatenby, T.R. McCauley, J.C. Gore, Med. Phys. 20, 1049 (1993)

    Article  Google Scholar 

  2. M.P. Hartung, T.M. Grist, C.J. François, J. Cardiovasc. Magn. Reson. 13, 19 (2011)

    Article  Google Scholar 

  3. J.N. Oshinski, D.N. Ku, R.I. Pettigrew, Magn. Reson. Med. 33, 193 (1995)

    Article  Google Scholar 

  4. L.S. Babiarz, J.M. Romero, E.K. Murphy, B. Brobeck, P.W. Schaefer, R.G. González, M.H. Lev, Am. J. Neuroradiol. 30, 761 (2009)

    Article  Google Scholar 

  5. J.C. DiCarlo, B.A. Hargreaves, K.S. Nayak, B.S. Hu, J.M. Pauly, D.G. Nishimura, Magn. Reson. Med. 54, 645 (2005)

    Article  Google Scholar 

  6. J.I. Jackson, D.G. Nishimura, A. Macovski, Magn. Reson. Med. 25, 128 (1992)

    Article  Google Scholar 

  7. T. Scarabino, A. Carriero, N. Magarelli, F. Florio, G.M. Giannatempo, L. Bonomo, U. Salvolini, Eur. J. Radiol. 28, 117 (1998)

    Article  Google Scholar 

  8. J.M. Siegel, J.N. Oshinski, R.I. Pettigrew, D.N. Ku, J. Biomech. 29, 1665 (1996)

    Article  Google Scholar 

  9. O. Adegbite, L. Kadem, B. Newling, Magn. Reson. Mater. Phys. Biol. Med. 27, 227 (2013)

    Article  Google Scholar 

  10. M. Negahdar, M. Kadbi, M. Kendrick, M.F. Stoddard, A.A. Amini, Magn. Reson. Med. (2015). doi:10.1002/mrm.25636

    Google Scholar 

  11. S. Petersson, P. Dyverfeldt, A. Sigfridsson, J. Lantz, C.-J. Carlhäll, T. Ebbers, Magn. Reson. Med. (2015). doi:10.1002/mrm.25698

    Google Scholar 

  12. R. Turner, M. von Kienlin, C.T. Moonen, P.C. van Zijl, Magn. Reson. Med. 14, 401 (1990)

    Article  Google Scholar 

  13. E. Yacoub, A. Shmuel, J. Pfeuffer, P.-F. Van De Moortele, G. Adriany, P. Andersen, J.T. Vaughan, H. Merkle, K. Ugurbil, X. Hu, Magn. Reson. Med. 45, 588 (2001)

    Article  Google Scholar 

  14. J. Pauly, D. Nishimura, A. Macovski, J. Magn. Reson. 1969(81), 43 (1989)

    ADS  Google Scholar 

  15. M.T. Alley, J.M. Pauly, F.G. Sommer, N.J. Pelc, Magn. Reson. Med. 37, 260 (1997)

    Article  Google Scholar 

  16. H.E. Cline, C.J. Hardy, J.D. Pearlman, Magn. Reson. Med. 17, 390 (1991)

    Article  Google Scholar 

  17. J. Finsterbusch, Magn. Reson. Imaging 31, 1228 (2013)

    Article  Google Scholar 

  18. I.I. Maximov, M.S. Vinding, D.H.Y. Tse, N.C. Nielsen, N.J. Shah, J. Magn. Reson. 254, 110 (2015)

    Article  ADS  Google Scholar 

  19. J.T. Vaughan, M. Garwood, C.M. Collins, W. Liu, L. DelaBarre, G. Adriany, P. Andersen, H. Merkle, R. Goebel, M.B. Smith, K. Ugurbil, Magn. Reson. Med. 46, 24 (2001)

    Article  Google Scholar 

  20. Z.-H. Cho, C.-K. Kang, J.-Y. Han, S.-H. Kim, K.-N. Kim, S.-M. Hong, C.-W. Park, Y.-B. Kim, Stroke 39, 1604 (2008)

    Article  Google Scholar 

  21. C.-K. Kang, M.-K. Woo, S.-M. Hong, Y.-B. Kim, Z.-H. Cho, Magn. Reson. Imaging 32, 1133 (2014)

    Article  Google Scholar 

  22. G.H. Glover, Magn. Reson. Med. 42, 412 (1999)

    Article  Google Scholar 

  23. S. Tang, W. Jiang, H.-Y. Chen, R. Bok, D.B. Vigneron, P.E.Z. Larson, Magn. Reson. Med. 74, 506 (2015)

    Article  Google Scholar 

  24. A. Takahashi, T. Peters, Magn. Reson. Med. 34, 446 (1995)

    Article  Google Scholar 

  25. N.P. Davies, P. Jezzard, Magn. Reson. Med. 53, 231 (2005)

    Article  Google Scholar 

  26. C.-K. Kang, C.-W. Park, J.-Y. Han, S.-H. Kim, C.-A. Park, K.-N. Kim, S.-M. Hong, Y.-B. Kim, K.H. Lee, Z.-H. Cho, Magn. Reson. Med. 61, 136 (2009)

    Article  Google Scholar 

  27. C.A. Holmstedt, T.N. Turan, M.I. Chimowitz, Lancet Neurol. 12, 1106 (2013)

    Article  Google Scholar 

  28. R. van ‘t Klooster, M. T. B. Truijman, A. C. van Dijk, F. H. B. M. Schreuder, M. E. Kooi, A. van der Lugt, and R. J. van der Geest, Stroke 45, e160 (2014)

  29. S. Rieseberg, J. Frahm, J. Finsterbusch, Magn. Reson. Med. 47, 1186 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Gachon University research fund (Grant Number: GCU-2015-0061 and GCU-2015-5030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Ki Kang or Yeong-Bae Lee.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, CK., Kim, SH., Kim, N. et al. Compensation for Signal Voids Caused by Turbulent Flow in Stenotic Vessels at 7T MRI: A Preliminary Study. Appl Magn Reson 47, 405–413 (2016). https://doi.org/10.1007/s00723-015-0758-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0758-0

Keywords

Navigation