Applied Magnetic Resonance

, Volume 47, Issue 2, pp 191–199 | Cite as

Monitoring the Influence of Aminosilane on Cement Hydration Via Low-field NMR Relaxometry

  • Alexandra Pop
  • Andrea Bede
  • Mircea Cristian Dudescu
  • Florin Popa
  • Ioan Ardelean
Article

Abstract

Nuclear magnetic resonance (NMR) relaxometry is used here as a noninvasive tool to monitor the influence introduced by the addition of 3-Aminopropyltriethoxysilane (APTES) on the hydration of pure cement paste and a cement paste containing quartz powder. It is observed extension of the dormancy stage up to 12 h in the presence of the aminosilane and a slight reduction in the size of capillary pores. The extension of the dormancy stage can be also associated with a slower hydration process which leads to enhancement of the final flexural strength in the case of sample containing quartz.

References

  1. 1.
    P.K. Mehta, P.J.M. Monteiro, I. Ebrary, Concrete: Microstructure, Properties, and Materials (McGraw-Hill, New York, 2006)Google Scholar
  2. 2.
    G. Collodetti, P.J.P. Gleize, P.J.M. Monteiro, Constr. Build. Mater. 54, 99 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Xu, D.D.L. Chung, Cem. Concr. Res. 30, 1305 (2000)CrossRefGoogle Scholar
  4. 4.
    F. Švegl, J. Šuput-Strupi, L. Škrlep, K. Kalcher, Cem. Concr. Res. 38, 945 (2008)CrossRefGoogle Scholar
  5. 5.
    X.-M. Kong, H. Liu, Z.-B. Lu, D.-M. Wang, Cem. Concr. Res. 67, 168 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Courtial, M.N. De Noirfontaine, F. Dunstetter, M. Signes-Frehel, P. Mounanga, K. Cherkaoui, A. Khelidj, Constr. Build. Mater. 44, 699 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Skibsted, C. Hall, Cem. Concr. Res. 38, 205 (2008)CrossRefGoogle Scholar
  8. 8.
    B.J. Balcom, J.C. Barrita, C. Choi, S.D. Beyea, D.J. Goodyear, T.W. Bremner, Mater. Struct. 36, 166 (2003)CrossRefGoogle Scholar
  9. 9.
    F. Brunet, T. Charpentier, C.N. Chao, H. Peycelon, A. Nonat, Cem. Concr. Res. 40, 208 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Faure, S. Caré, C. Po, S. Rodts, Magn. Reson. Imaging 23, 311 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Badea, A. Pop, C. Mattea, S. Stapf, I. Ardelean, Appl. Magn. Reson. 45, 1299 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Nestle, P. Galvosas, O. Geier, C. Zimmermann, M. Dakkouri, J. Kärger, J. Appl. Phys. 89, 8061 (2001)CrossRefADSGoogle Scholar
  13. 13.
    P.F. Faure, S. Rodts, Magn. Reson. Imaging 26, 1183 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Pop, C. Badea, I. Ardelean, Appl. Magn. Reson. 44, 1223 (2013)CrossRefGoogle Scholar
  15. 15.
    J.-P. Korb, Curr. Opin. Colloid Interface Sci. 14, 192 (2009)CrossRefGoogle Scholar
  16. 16.
    P.J. Mcdonald, V. Rodin, A. Valori, Cem. Concr. Res. 40, 1656 (2010)CrossRefGoogle Scholar
  17. 17.
    V. Bortolotti, P. Fantazzini, R. Mongiorgi, S. Sauro, S. Zanna, Cem. Concr. Res. 42, 577 (2012)CrossRefGoogle Scholar
  18. 18.
    K.-J. Dunn, J. Magn. Reson. 156, 171 (2002)CrossRefADSGoogle Scholar
  19. 19.
    S. Muncaci, I. Ardelean, Appl. Magn. Reson. 44, 837 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958)CrossRefADSGoogle Scholar
  21. 21.
    S.W. Provencher, Comput. Phys. Commun. 27, 229 (1982)CrossRefADSGoogle Scholar
  22. 22.
    A. Pop, I. Ardelean, Cem. Concr. Res. 77, 76 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Barberon, J.-P. Korb, D. Petit, V. Morin, E. Bermejo, Phys. Rev. Lett. 90, 1 (2003)CrossRefGoogle Scholar
  24. 24.
    S. Muncaci, C. Mattea, S. Stapf, I. Ardelean, Magn. Reson. Chem. 51, 123 (2013)Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Alexandra Pop
    • 1
  • Andrea Bede
    • 1
  • Mircea Cristian Dudescu
    • 1
  • Florin Popa
    • 1
  • Ioan Ardelean
    • 1
  1. 1.Department of Physics and ChemistryTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations