Skip to main content

The Sensitivity of Phosphocholine 13C Chemical Shifts to pH


Phosphocholine is a useful magnetic resonance (MR) biomarker for cancer. 13C hyperpolarized MR is likely to enhance the detection of this compound by orders of magnitude. The ability to differentiate phosphocholine from its precursor, choline, in live tissues, is unique to MR and depends on the 13C chemical shifts. The dependence of phosphocholine 13C chemical shifts on pH was investigated. We found that under viable physiological conditions of pH > 7, the chemical shift of phosphocholine 13C is stable and the chemical shift distance from the choline 13C signals is preserved. Under acidic intracellular conditions of 6.0 < pH < 7, the pH could be sensed by the phosphocholine 13C chemical shifts. Crucial and damaging pH changes to values lower than 6.0 could be sensed at very high sensitivity. The highest precision for pH determination is obtained when considering the chemical shift difference between positions 1 and 2 of phosphocholine. The solution composition of human plasma did not affect the response of phosphocholine 13C chemical shifts to pH.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. T. Hara, T. Kondo, T. Hara, N. Kosaka, J. Neurosurg. 99(3), 474–479 (2003)

    Article  Google Scholar 

  2. K.B. Contractor, L.M. Kenny, J. Stebbing, A. Al-Nahha, C. Palmieri, D. Sinnett, J.S. Lewis, K. Hogben, S. Osman, S. Shousha, C. Lowdell, R.C. Coombes, E.O. Aboagye, Clin. Cancer Res. 15(17), 5503–5510 (2009)

    Article  Google Scholar 

  3. T.H. Witney, I.S. Alam, D.R. Turton, G. Smith, L. Carroll, D. Brickute, F.J. Twyman, Q.D. Nguyen, G. Tomasi, R.O. Awais, E.O. Aboagye, Clin. Cancer Res. 18(4), 1063–1072 (2012)

    Article  Google Scholar 

  4. H.S. Venkatesh, M.M. Chaumeil, C.S. Ward, D.A. Haas-Kogan, C.D. James, S.M. Ronen, Neuro-Oncology 14(3), 315–325 (2012)

    Article  Google Scholar 

  5. R. Katz-Brull, D. Seger, D. Rivenson-Segal, E. Rushkin, H. Degani, Cancer Res. 62(7), 1966–1970 (2002)

    Google Scholar 

  6. N.M. Loening, A.M. Chamberlin, A.G. Zepeda, R.G. Gonzalez, L.L. Cheng, NMR Biomed. 18(7), 413–420 (2005)

    Article  Google Scholar 

  7. R. Katz-Brull, A.R. Koudinov, H. Degani, Brain Res. 951(2), 158–165 (2002)

    Article  Google Scholar 

  8. R. Katz-Brull, P.T. Lavin, R.E. Lenkinski, J. Natl. Cancer Inst. 94(16), 1197–1203 (2002)

    Article  Google Scholar 

  9. B.F. Jordan, K. Black, I.F. Robey, M. Runquist, G. Powis, R.J. Gillies, NMR Biomed. 18(7), 430–439 (2005)

    Article  Google Scholar 

  10. J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100(18), 10158–10163 (2003)

    Article  ADS  Google Scholar 

  11. H. Allouche-Arnon, M.H. Lerche, M. Karlsson, R.E. Lenkinski, R. Katz-Brull, Contrast Media Mol. Imaging 6, 499–506 (2011)

    Article  Google Scholar 

  12. H. Allouche-Arnon, A. Gamliel, C.M. Barzilay, R. Nalbandian, J.M. Gomori, M. Karlsson, M.H. Lerche, R. Katz-Brull, Contrast Media Mol. Imaging 6, 139–147 (2011)

    Article  Google Scholar 

  13. H. Allouche-Arnon, A. Gamliel, J. Sosna, J.M. Gomori, R. Katz-Brull, Chem. Commun. 49(63), 7076–7078 (2013)

    Article  Google Scholar 

  14. H. Allouche-Arnon, Y. Hovav, L. Friesen-Waldner, J. Sosna, J.M. Gomori, S. Vega, R. Katz-Brull, NMR Biomed. 27(6), 656–662 (2014)

    Article  Google Scholar 

  15. L.J. Friesen-Waldner, C.N. Wiens, T.P. Wade, K. Thind, K.P. Sinclair, Y. Hovav, J.M. Gomori, J. Sosna, C.A. McKenzie, R. Katz-Brull, Chem. Commun. 50(89), 13801–13804 (2014)

    Article  Google Scholar 

  16. P.M.L. Robitaille, P.A. Robitaille, G.G. Brown, J. Magn. Reson. 92(1), 73–84 (1991)

    ADS  Google Scholar 

  17. O.B. Vistad, D.E. Akporiaye, F. Taulelle, K.P. Lillerud, Chem. Mat. 15(8), 1650–1654 (2003)

    Article  Google Scholar 

  18. Wolfram/alpha, (

  19. J.N. Butler, Solubility and pH Calculations : the Mathematics of the Simplest Ionic Equilibria (Addison-Wesley, Boston, 1964)

    Google Scholar 

  20. J.N. Butler, Ionic Equilibrium : a Mathematical Approach (Addison-Wesley, Boston, 1964)

    Google Scholar 

  21. D.G. Gadian, Biological applications of magnetic resonance, Chapter 10. 31P NMR in living tissue, ed. by R.G. Shulman (Academic Press, New York, 1979)

  22. R.K. Scopes, Protein purification; principles and practice, Chapter 12.3 Control of pH: Buffers. Springer advanced texts in chemistry. 3rd edn. (Springer, New York, 1994)

  23. E. Humeres, J. Quijano, M.M.S. de Siera, J. Braz. Chem. Soc. 1(3), 99–104 (1990)

    Article  Google Scholar 

  24. X.F. Yu, X.Q. Yang, S. Horte, J.N. Kizhakkedathu, D.E. Brooks, Biomaterials 35(1), 278–286 (2014)

    Article  Google Scholar 

  25. K.R. Keshari, D.M. Wilson, Chem. Soc. Rev. 43(5), 1627–1659 (2014)

    Article  Google Scholar 

  26. F.A. Gallagher, M.I. Kettunen, S.E. Day, D.-E. Hu, J.H. Ardenkjaer-Larsen, R. in’t Zandt, P.R. Jensen, M. Karlsson, K. Golman, M.H. Lerche, K.M. Brindle, Nature 453(7197), 940–943 (2008)

    Article  ADS  Google Scholar 

  27. F.A. Gallagher, M.I. Kettunen, S.E. Day, D.-E. Hu, M. Karlsson, A. Gisselsson, M.H. Lerche, K.M. Brindle, Magn. Reson. Med. 66(1), 18–23 (2011)

    Article  Google Scholar 

Download references


This work was funded by the Israel Science Foundation (Grant No. 284/10) and the European Research Council (Grant No. 338040).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rachel Katz-Brull.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gamliel, A., Chendler, N., Moshe Gomori, J. et al. The Sensitivity of Phosphocholine 13C Chemical Shifts to pH. Appl Magn Reson 47, 111–120 (2016).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Chemical Shift
  • Phosphocholine
  • Chemical Shift Difference
  • PCho
  • Plasma Solution