Skip to main content
Log in

The Line Width of the EPR Signal of Gaseous Nitric Oxide as Determined by Pressure and Temperature-Dependent X-band Continuous Wave Measurements

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The electron paramagnetic resonance (EPR) signal of gaseous nitric oxide (NO) has been measured by continuous wave X-band experiments at room temperature at gas pressures between 1 mbar and 60 mbar and at a gas pressure of 48 mbar at different low temperatures. A phenomenological spin Hamiltonian approach allows simulating each EPR signal of NO by changing only a single line width parameter. At room temperature, this line width depends linearly on the NO gas pressure which can be explained by kinetic gas theory. An effective collisional cross section has been determined by this way which is about twice as large as the known cross section for NO derived from viscosity measurements. Experiments with NO gas at low temperatures are consistent to the line width interpretation by kinetic theory. In total, the results demonstrate that in NO adsorption and desorption experiments at different temperatures and NO gas pressures below 60 mbar the amount of desorbed NO can simply be determined in situ by the line width of this signal, which one can obtain easily from a conventional simulation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Chiesa, E. Giamello, M. Che, Chem. Rev. 110, 1320 (2009). doi:10.1021/cr800366v

    Article  Google Scholar 

  2. A. Baldansuren, R.-A. Eichel, E. Roduner, Phys. Chem. Chem. Phys. 11, 6664 (2009). doi:10.1039/B903870A

    Article  Google Scholar 

  3. C. Pal, P.S. Wheatley, H.E. Mkami, D.J. Keeble, R.E. Morris, O. Schiemann, Appl. Magn. Reson. 37, 619–627 (2010). doi:10.1007/s00723-009-0071-x

    Article  Google Scholar 

  4. P. Pietrzyk, K. Podolska, Z. Sojka, J. Phys. Chem. C 115, 13008 (2011). doi:10.1021/jp203188k

    Article  Google Scholar 

  5. P. Pietrzyk, C. Dujardin, K. Gora-Marek, P. Granger, Z. Sojka, Phys. Chem. Chem. Phys. 14, 2203 (2012). doi:10.1039/C1CP23038G

    Article  Google Scholar 

  6. B. Barth, M. Mendt, A. Pöppl, M. Hartmann, Micropor. Mesopor. Mat. (2015). doi:10.1016/j.micromeso.2015.02.020

    MATH  Google Scholar 

  7. A.C. McKinlay, B. Xiao, D.S. Wragg, P.S. Wheatley, I.L. Megson, R.E. Morris, J. Am. Chem. Soc. 130, 10440 (2008). doi:10.1021/ja801997r

    Article  Google Scholar 

  8. R. Beringer, J. Castle, Phys. Rev. 78, 581 (1950). doi:10.1103/PhysRev.78.581

    Article  ADS  Google Scholar 

  9. M. Jinguji, Y. Ohokubo, I. Tanaka, Chem. Phys. Lett. 54, 136 (1978). doi:10.1016/0009-2614(78)85683-8

    Article  ADS  Google Scholar 

  10. F. Bonino, S. Chavan, J.G. Vitillo, E. Groppo, G. Agostini, C. Lamberti, P.D.C. Dietzel, C. Prestipino, S. Bordiga, Chem. Mater. 20, 4957 (2008). doi:10.1021/cm800686k

    Article  Google Scholar 

  11. M.A. Newton, B. Jyoti, A.J. Dent, S.G. Fiddy, J. Evans, Chem. Commun., 2382 (2004) doi: 10.1039/B405694A

  12. T. Rudolf, A. Pöppl, W. Brunner, D. Michel, Magn. Reson. Chem. 37, S93 (1999). doi:10.1002/(SICI)1097-458X(199912)37:13<S93:AID-MRC565>3.0.CO;2-E

    Article  Google Scholar 

  13. T. Rudolf, W. Böhlmann, A. Pöppl, J. Magn. Reson. 155, 45 (2002). doi:10.1006/jmre.2002.2504

    Article  ADS  Google Scholar 

  14. A.A. Westenberg, N. deHaas. J. Chem. Phys. 51, 5215 (1969). doi:10.1063/1.1671935

    Article  ADS  Google Scholar 

  15. M. Ruzzi, E. Sartori, A. Moscatelli, I.V. Khudyakov, N.J. Turro, J. Phys. Chem. A 117, 5232 (2013). doi:10.1021/jp403648d

    Article  Google Scholar 

  16. T.J. Cook, T.A. Miller, J. Chem. Phys. 59, 1352 (1973). doi:10.1063/1.1680190

    Article  ADS  Google Scholar 

  17. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006). doi:10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  18. G.R. Hanson, K.E. Gates, C.J. Noble, M. Griffin, A. Mitchell, S. Benson, Contributions from the 11th International Conference on Biological Inorganic Chemistry 98, 903 (2004) doi: 10.1016/j.jinorgbio.2004.02.003

  19. G. Herzberg, J.W.T. Spinks, Spectra of Diatomic Molecules (D. Van Nostrand Company, New York [etc.], 1950)

  20. T.C. James, R.J. Thibault, J. Chem. Phys. 41, 2806 (1964). doi:10.1063/1.1726356

    Article  ADS  Google Scholar 

  21. M. Mizushima, Phys. Rev. 94, 569 (1954)

    Article  MATH  ADS  Google Scholar 

  22. R. Beringer, E.B. Rawson, A.F. Henry, Phys. Rev. 94, 343 (1954). doi:10.1103/PhysRev.94.343

    Article  ADS  Google Scholar 

  23. R.L. Brown, H.E. Radford, Phys. Rev. 147, 6 (1966). doi:10.1103/PhysRev.147.6

    Article  ADS  Google Scholar 

  24. J.H. van Vleck, Rev. Mod. Phys. 23, 213 (1951)

    Article  MATH  ADS  Google Scholar 

  25. H. Margenau, A. Henry, Phys. Rev. 78, 587 (1950). doi:10.1103/PhysRev.78.587

    Article  ADS  Google Scholar 

  26. C.C. Lin, M. Mizushima, Phys. Rev. 100, 1726 (1955). doi:10.1103/PhysRev.100.1726

    Article  ADS  Google Scholar 

  27. G. Dousmanis, Phys. Rev. 97, 967 (1955). doi:10.1103/PhysRev.97.967

    Article  ADS  Google Scholar 

  28. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd edn. (Wiley-Interscience, Hoboken, N.J., 2007)

    Google Scholar 

  29. E.L. Hill, Phys. Rev. 34, 1507 (1929)

    Article  MATH  ADS  Google Scholar 

  30. S. Stoll, Dissertation (ETH Zürich, 2003)

  31. H. Bauer, K.F. Sahm, J. Chem. Phys. 42, 3400 (1965). doi:10.1063/1.1695741

    Article  ADS  Google Scholar 

  32. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, London, 1954)

    MATH  Google Scholar 

  33. C.J. Jameson, A.K. Jameson, J.K. Hwang, J. Chem. Phys. 94, 172 (1991). doi:10.1063/1.460375

    Article  ADS  Google Scholar 

  34. C.J. Jameson, A.K. Jameson, J.K. Hwang, J. Chem. Phys. 89, 4074 (1988). doi:10.1063/1.454842

    Article  ADS  Google Scholar 

  35. F.M. Chen, R.F. Snider, J. Chem. Phys. 46, 3937 (1967). doi:10.1063/1.1840467

    Article  ADS  Google Scholar 

  36. W.V. Smith, R. Howard, Phys. Rev. 79, 132 (1950). doi:10.1103/PhysRev.79.132

    Article  ADS  Google Scholar 

  37. L.D. Landau, E.M. Lifshits, L.P. Pitaevskiĭ, J.B. Sykes, M.J. Kearsley, Statistical Physics, 3rd edn. (Elsevier Butterworth Heinemann, Amsterdam, London, 1980)

  38. C. Gerthsen, D. Meschede, Gerthsen Physik, 24th edn. (Springer, Berlin [u.a.], 2010)

  39. C.J. Ultee, J. Chem. Phys. 54, 5437 (1971). doi:10.1063/1.1674854

    Article  ADS  Google Scholar 

  40. T.J. Cook, T.A. Miller, J. Chem. Phys. 59, 1342 (1973). doi:10.1063/1.1680189

    Article  ADS  Google Scholar 

  41. W.E. Köhler, Z. Naturforsch. 29a, 1705 (1974)

  42. C. Wang, W. Tomlinson, Phys. Rev. 181, 115 (1969). doi:10.1103/PhysRev.181.115

    Article  ADS  Google Scholar 

  43. A. Gallagher, Phys. Rev. 157, 68 (1967). doi:10.1103/PhysRev.157.68

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The financial support of this work by the Deutsche Forschungsgemeinschaft (DFG) in the frame of its priority program SPP 1362 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Pöppl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendt, M., Pöppl, A. The Line Width of the EPR Signal of Gaseous Nitric Oxide as Determined by Pressure and Temperature-Dependent X-band Continuous Wave Measurements. Appl Magn Reson 46, 1249–1263 (2015). https://doi.org/10.1007/s00723-015-0714-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0714-z

Keywords

Navigation