Skip to main content
Log in

Intracerebral Antioxidant Ability of Neonatal Rats After Acute Hypoxic–Ischemic Brain Injury Estimated Using the Brain Homogenate-ESR Method

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The intracerebral antioxidant ability of neonatal rats after acute hypoxic–ischemic (HI) brain injury was estimated using the brain homogenate-ESR method after intraperitoneal injection of 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl, blood–brain-barrier permeable stable cyclic nitroxide. Seven-day-old Wistar rats were subjected to a modified Levine’s procedure for producing HI brain injury. The rats 7 days after HI insult were ranked in severe, mild and normal groups based on their brain damage. The severe brain damage was observed with high probability. The intracerebral antioxidant ability of the normal and mild groups was same as that of the control rats. On the other hand, the antioxidant ability in the ligated side of the cerebral hemisphere of the severe group was significantly lower than that of the control rats. The HI insult resulted in the oxidative stress and the insufficient supply of the endogenous antioxidants, which caused the significant decrease in the intracerebral antioxidant ability. The brain homogenate-ESR method can be easily conducted for a large number of neonatal rats at regular time intervals, which indicates the usefulness of the method to evaluate the intracerebral antioxidant ability of neonatal rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Levine, Am. J. Pathol. 36, 1 (1960)

    Google Scholar 

  2. J.E. Rice, R.C. Vannucci, J.B. Brierley, Ann. Neurol. 9, 131 (1960)

    Article  Google Scholar 

  3. A. Ota, T. Ikeda, K. Abe, H. Sameshima, X.Y. Xia, Y.X. Xia, T. Ikenoue, Am. J. Obstet. Gynecol. 179, 1075 (1998)

    Article  Google Scholar 

  4. T. Ikeda, K. Mishima, T. Yoshikawa, K. Iwasaki, M. Fujiwara, Y.X. Xia, T. Ikenoue, Behav. Brain Res. 118, 17 (2001)

    Article  Google Scholar 

  5. Y. Ueda, J.I. Noor, K. Nagatomo, T. Doi, T. Ikeda, A. Nakajima, T. Ikenoue, Exp. Brain Res. 169, 117 (2006)

    Article  Google Scholar 

  6. J.I. Noor, T. Ikeda, Y. Ueda, T. Ikenoue, Am. J. Obst. Gynecol. 193, 1703 (2005)

    Article  Google Scholar 

  7. J.I. Noor, Y. Ueda, T. Ikeda, T. Ikenoue, Neurosci. Lett. 414, 5 (2007)

    Article  Google Scholar 

  8. H. Yokoyama, Y. Ueda, O. Itoh, T. Ikeda, J.I. Noor, T. Ikenoue, Magn. Reson. Imag. 22, 1305 (2004)

    Article  Google Scholar 

  9. A. Nakajima, Y. Ueda, H. Sameshima, T. Ikenoue, J. Obstet. Gynecol. Res. 41, 884 (2015)

    Article  Google Scholar 

  10. Y. Miura, K. Anzai, J. Ueda, T. Ozawa, Biochim. Biophys. Acta 1525, 167 (2001)

    Article  Google Scholar 

  11. Y. Ueda, H. Yokoyama, J. Tokumaru, T. Doi, A. Nakajima, Neurochem. Res. 29, 1695 (2004)

    Article  Google Scholar 

  12. T. Ikeda, Y.X. Xia, M. Kaneko, H. Sameshima, T. Ikenoue, Neurosci. Lett. 329, 33 (2002)

    Article  Google Scholar 

  13. J.P. Mortola, A. Dotta, Am. J. Physiol. 263, R267 (1992)

    Google Scholar 

  14. A. Ota, T. Ikeda, T. Ikenoue, K. Toshimori, Am. J. Obstet. Gynecol. 177, 519 (1997)

    Article  Google Scholar 

  15. A. Nakajima, Y. Masuda, E. Matsuda, Y. Ueda, H. Sameshima, T. Ikenoue, Appl. Magn. Reson. 40, 535 (2011)

    Article  Google Scholar 

  16. A. Nakajima, Y. Ueda, E. Matsuda, H. Sameshima, T. Ikenoue, Appl. Magn. Reson. 45, 1417 (2014)

    Article  Google Scholar 

  17. M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur, J. Telser, Int. J. Biochem. Cell Biol. 39, 44 (2007)

    Article  Google Scholar 

  18. Y. Hayashi, Y. Ueda, A. Nakajima, Y. Mitsuyama, Brain Res. 1025, 29 (2004)

    Article  Google Scholar 

  19. S. Ikeno, N. Nagata, S. Yoshida, H. Takahashi, J. Kigawa, N. Terakawa, J. Obstet. Gynaecol. Res. 26, 227 (2000)

    Article  Google Scholar 

  20. A.A. Bobko, I.A. Kirilyuk, I.A. Grigor’ev, J.L. Zweier, V.V. Khramtsov, Free Radic. Biol. Med 42, 404 (2007)

    Article  Google Scholar 

  21. X.Y. Xia, H. Sameshima, T. Ikeda, T. Higo, T. Ikenoue, J. Obstet. Gynaecol. Res. 28, 320 (2002)

    Article  Google Scholar 

  22. T.B. Shea, E. Rogers, D. Ashline, D. Ortiz, M.-S. Sheu, J. Neurosci. Methods 125, 55 (2003)

    Article  Google Scholar 

  23. V. Katalinic, D. Modum, I. Music, M. Boban, Compara. Biochem. Physiol. C 140, 47 (2005)

    Google Scholar 

  24. I.R. Siqueira, C. Fochesatto, A. de Andrade, M. Santos, M. Hagen, A. Bello-Klein, C.A. Netto, Int. J. Develop. Neurosci. 23, 663 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, A., Yang, L., Matsuda, E. et al. Intracerebral Antioxidant Ability of Neonatal Rats After Acute Hypoxic–Ischemic Brain Injury Estimated Using the Brain Homogenate-ESR Method. Appl Magn Reson 46, 1079–1088 (2015). https://doi.org/10.1007/s00723-015-0710-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0710-3

Keywords

Navigation