Skip to main content
Log in

Relativistic Effects in NMR of New Prospective Water-Soluble Ligands SeP(CH2OH)3 and H[Se2P(CH2OH)2]

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We present the synthesis of new phosphine selenide SeP(CH2OH)3 and diselenophosphinate H[Se2P(CH2OH)2] and their characterization with nuclear magnetic resonance (NMR) spectroscopy and quantum chemistry methods. DFT calculations show large relativistic spin–orbit effects in NMR shielding of phosphorus nuclei. We discuss the impact of Se lone pairs and electrons of P–Se and P–C bonds on the 31P NMR shift and, especially, its relativistic part. The description of P–Se bonds and characterization of electron lone pairs on Se atoms are carried out with the help of natural localized molecular orbitals analysis and topological analysis of electron localization function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N. Pinault, Coord. Chem. Rev. 241, 1 (2003)

    Article  Google Scholar 

  2. G. Gasser, N. Metzler-Nolte, Curr. Opin. Chem. Biol. 16, 84 (2012)

    Article  Google Scholar 

  3. L.-A. Schaper, S.J. Hock, W.A. Herrmann, F.E. Kühn, Angew. Chem. Int. Ed. Engl. 52, 270 (2013)

    Article  Google Scholar 

  4. B.R. James, F. Lorenzini, Coord. Chem. Rev. 254, 420 (2010)

    Article  Google Scholar 

  5. A.W. Frank, G.L. Drake, J. Org. Chem. 37, 2752 (1972)

    Article  Google Scholar 

  6. G. Loewengart, B.L. Van Duuren, Tetrahedron Lett. 17, 3473 (1976)

    Article  Google Scholar 

  7. M.N. Sokolov, A.V. Anyushin, A.V. Virovets, I.V. Mirzaeva, N.F. Zakharchuk, V.P. Fedin, Inorg. Chem. Commun. 14, 1659 (2011)

    Article  Google Scholar 

  8. A.V. Anyushin, D.A. Mainichev, N.K. Moroz, P.A. Abramov, D.Y. Naumov, M.N. Sokolov, V.P. Fedin, Inorg. Chem. 51, 9995 (2012)

    Article  Google Scholar 

  9. A.V. Anyushin, M.N. Sokolov, A.V. Virovets, N.F. Zakharchuk, D.A. Mainichev, V.P. Fedin, Inorg. Chem. Commun. 24, 225 (2012)

    Article  Google Scholar 

  10. A.V. Anyushin, M.N. Sokolov, A.V. Virovets, V.P. Fedin, J. Struct. Chem. 54, 638 (2013)

    Article  Google Scholar 

  11. M. Lazell, P. O’Brien, D. J. Otway, and J.-H. Park, J. Chem. Soc. Dalt. Trans. 4479 (2000)

  12. R.P. Davies, C.V. Francis, A.P.S. Jurd, M.G. Martinelli, A.J.P. White, D.J. Williams, Inorg. Chem. 43, 4802 (2004)

    Article  Google Scholar 

  13. M.B. Jones, A.J. Gaunt, J.C. Gordon, N. Kaltsoyannis, M.P. Neu, B.L. Scott, Chem. Sci. 4, 1189 (2013)

    Article  Google Scholar 

  14. B.M. Cossairt, J.S. Owen, Chem. Mater. 23, 3114 (2011)

    Article  Google Scholar 

  15. P.A. Abramov, M.N. Sokolov, A.V. Virovets, I.V. Mirzaeva, S.G. Kozlova, C. Vicent, V.P. Fedin, J. Organomet. Chem. 770, 94 (2014)

    Article  Google Scholar 

  16. P.A. Abramov, N.F. Zakharchuk, A.V. Virovets, I.V. Mirzaeva, M.N. Sokolov, J. Organomet. Chem. 767, 65 (2014)

    Article  Google Scholar 

  17. P.A. Abramov, M.N. Sokolov, I.V. Mirzaeva, N.K. Moroz, Russ. J. Coord. Chem. 39, 379 (2013)

    Article  Google Scholar 

  18. P.A. Abramov, M.N. Sokolov, E.V. Peresypkina, I.V. Mirzaeva, N.K. Moroz, C. Vicent, R. Hernandez-Molina, M.C. Goya, M.C. Arévalo, V.P. Fedin, Inorganica Chim. Acta 375, 314 (2011)

    Article  Google Scholar 

  19. M.R. Ryzhikov, S.G. Kozlova, S.P. Gabuda, J. Struct. Chem. 49, 587 (2008)

    Article  Google Scholar 

  20. B. Akdim, R. Pachter, R.A. Vaia, Chem. Phys. Lett. 615, 99 (2014)

    Article  ADS  Google Scholar 

  21. A.L. Gushchin, R. Llusar, C. Vicent, P.A. Abramov, C.J. Gómez-Garcia, Eur. J. Inorg. Chem. 2013, 2615 (2013)

    Article  Google Scholar 

  22. S.P. Gabuda, S.G. Kozlova, M.R. Ryzhikov, V.E. Fedorov, J. Phys. Chem. C 116, 20651 (2012)

    Article  Google Scholar 

  23. J. Chatt, G. J. Leigh, and R. M. Slade, J. Chem. Soc. Dalt. Trans. 2021 (1973)

  24. F. Weinhold, C.R. Landis, Chem. Educ. Res. Pract. 2, 91 (2001)

    Article  Google Scholar 

  25. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)

    Article  ADS  Google Scholar 

  26. A. Savin, O. Jepsen, J. Flad, O.K. Andersen, H. Preuss, H.G. von Schnering, Angew. Chemie Int. Ed. English 31, 187 (1992)

    Article  Google Scholar 

  27. E.J. Baerends, J. Autschbach, A. Bérces, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, L. Fan, T.H. Fischer, C. Fonseca Guerra, S.J.A. van Gisbergen, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, F.E. Harris, P. van den Hoek, H. Jacobsen, G. van Kessel, F. Kootstra, E. van Lenthe, D.A. McCormack, V.P. Osinga, S. Patchkovskii, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, P. Ros, P.R.T. Schipper, G. Schreckenbach, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, O. Visser, E. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, and T. Ziegler, ADF: SCM, Vrije Universiteit, Theoretical Chemistry: Amsterdam, The Netherlands, http://www.scm.com

  28. E. van Lenthe, R. van Leeuwen, E.J. Baerends, J.G. Snijders, Int. J. Quantum Chem. 57, 281 (1996)

    Article  Google Scholar 

  29. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  30. J.P. Perdew, W. Yue, Phys. Rev. B 33, 8800 (1986)

    Article  ADS  Google Scholar 

  31. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  32. J. Autschbach, S. Zheng, Annu. Reports NMR Spectrosc. 67, 1 (2009)

    Article  Google Scholar 

  33. J. Autschbach, T. Ziegler, J. Chem. Phys. 113, 936 (2000)

    Article  ADS  Google Scholar 

  34. J. Autschbach, T. Ziegler, J. Chem. Phys. 113, 9410 (2000)

    Article  ADS  Google Scholar 

  35. E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold, NBO 5.0, Theoretical chemistry institute, University of Wisconsin, Madison, WI (2001). http://www.chem.wisc.edu/~nbo5

  36. M. Kohout, DGrid, version 4.6, Radebeul, 2011, www2.cpfs.mpg.de/~kohout/dgrid.html

  37. U. Beckmann, D. Süslüyan, P.C. Kunz, Phosphorus, Sulfur Silicon Relat. Elem. 186, 2061 (2011)

    Article  Google Scholar 

  38. A. Artem’ev, S. Malysheva, N. Gusarova, N. Belogorlova, and B. Trofimov, Synthesis (Stuttg). 11, 1777 (2010)

  39. H. Duddeck, Prog. Nucl. Magn. Reson. Spectrosc. 27, 1 (1995)

    Article  Google Scholar 

  40. C. Flener Lovitt, G. Frenking, G. S. Girolami, and C. F. Lovitt, Organometallics 31, 4122 (2012)

  41. K.A. Chernyshev, L.B. Krivdin, Russ. J. Org. Chem. 47, 355 (2011)

    Article  Google Scholar 

  42. R.M. Aminova, E.R. Baisupova, A.V. Aganov, Appl. Magn. Reson. 40, 147 (2011)

    Article  Google Scholar 

  43. J. Autschbach, M. Sterzel, J. Am. Chem. Soc. 129, 11093 (2007)

    Article  Google Scholar 

  44. S.V. Fedorov, Y.Y. Rusakov, L.B. Krivdin, Magn. Reson. Chem. 52, 699 (2014)

    Article  Google Scholar 

  45. J. Autschbach, High Resolution NMR Spectroscopy—Understanding Molecules and Their Electronic Structures, 1st ed. (Elsevier, 2013), pp. 69–117

  46. J. Autschbach, S. Zheng, Magn. Reson. Chem. 46(Suppl 1), S45 (2008)

    Article  Google Scholar 

  47. J. Autschbach, J. Chem. Phys. 128, 164112 (2008)

    Article  ADS  Google Scholar 

  48. S. Moncho, J. Autschbach, Magn. Reson. Chem. 48(Suppl 1), S76 (2010)

    Article  Google Scholar 

  49. T.M. Gilbert, T. Ziegler, J. Phys. Chem. A 103, 7535 (1999)

    Article  Google Scholar 

  50. P. Pyykkö, Relativistic Theory of Atoms and Molecules III (Springer, Berlin, 2000)

    Book  Google Scholar 

  51. J. Vícha, M. Straka, M.L. Munzarová, R. Marek, J. Chem. Theory Comput. 10, 1489 (2014)

    Article  Google Scholar 

  52. I.V. Drebushchak, S.G. Kozlova, J. Struct. Chem. 51, 166 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was dedicated to the memory of our dear colleague and mentor Professor S. P. Gabuda who, among his other works, performed some remarkable studies of relativistic effects in NMR. The work was supported by the Russian Foundation for Basic Research (project nos. 14-03-31333 mol_a and 14-03-31080 mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Valerievna Mirzaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaeva, I.V., Kozlova, S.G. & Anyushin, A.V. Relativistic Effects in NMR of New Prospective Water-Soluble Ligands SeP(CH2OH)3 and H[Se2P(CH2OH)2]. Appl Magn Reson 46, 1147–1157 (2015). https://doi.org/10.1007/s00723-015-0699-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0699-7

Keywords

Navigation