Skip to main content
Log in

High-Precision MRI Reconstruction Algorithm for 3D Sphere Packings

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Packings of granular materials are complex systems consisting of large sets of particles interacting via contact forces. Their internal structure is interesting for several theoretical and practical reasons, especially when the model system consists in a large amount (up to 105) of identical spheres. We herein present a method to process three-dimensional water density maps recorded in wet granular packings of mm-size spheres by magnetic resonance imaging (MRI). Packings of spheres with highly mono-dispersed diameter are considered and the implementation of an ad hoc reconstruction algorithm tailored for this feature allows for the determination of the position of each single sphere with an unprecedented precision (with respect to the scale of the system) while ensuring that all spheres are identified and no non-existing sphere is introduced in the reconstructed packing. The reconstruction of a 0.5 L sample containing about 2 × 104 spheres is presented to demonstrate the robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L.P. Kadanoff, Rev. Mod. Phys. 71, 435–444 (1999)

    Article  ADS  Google Scholar 

  2. R.L. Brown, J.C. Richards, P.V. Danckwerts, Principles of Powder Mechanics, 1st edn. (Pergamon Press, Oxford, 1970)

  3. R.M. Nedderman, J. Fluid Mech. 286, 405–445 (1995)

    Article  Google Scholar 

  4. O. Dauchot, in Ageing and the Glass Transition, ed. by M. Henkel, M. Pleimling, R. Sanctuary (Springer, Berlin, Heidelberg, 2007), pp. 161–206. doi:10.1007/3-540-69684-9

  5. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  6. T.C. Hales, Disc. Comp. Geo. 36, 5–20 (2011)

    Article  MathSciNet  Google Scholar 

  7. G.D. Scott, Nature 194, 956–957 (1962)

    Article  ADS  Google Scholar 

  8. J.D. Bernal, J. Mason, Nature 188, 910–911 (1960)

    Article  ADS  Google Scholar 

  9. G. Mason, Nature 217, 733–735 (1968)

    Article  ADS  Google Scholar 

  10. G.D. Scott, D.M. Kilgour, J. Phys. Appl. Phys. 2, 863 (1969)

    Article  ADS  Google Scholar 

  11. J. Duran, Sands, Powders, and Grains, 1st edn. (Springer, New York, 2000). doi:10.1007/978-1-4612-0499-2

  12. T. Aste, M. Saadatfar, T.J. Senden, Phys. Rev. E 71, 061302 (2005)

    Article  ADS  Google Scholar 

  13. J.G. Berryman, Phys. Rev. A 27, 1053–1061 (1983)

    Article  ADS  Google Scholar 

  14. G.Y. Onoda, E.G. Liniger, Phys. Rev. Lett. 64, 2727–2730 (1990)

    Article  ADS  Google Scholar 

  15. F.M. Schaller, M. Neudecker, M. Saadatfar, G. Delaney, K. Mecke, G.E. Schröder-Turk, M. Schröter, AIP Conf. Proc. 1542, 377–380 (2013). doi:10.1063/1.4811946

    Article  ADS  Google Scholar 

  16. R. Balzan, A.L. Sellerio, D. Mari, A. Comment, G. Gremaud, Granul. Matter 15, 873–879 (2013)

    Article  Google Scholar 

  17. Z.-P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective, 1st edn. (Wiley-IEEE Press, Oxford, 1999)

  18. N. Otsu, IEEE Trans. Syst. Man Cyber. SMC 9, 62–66 (1979)

    Article  Google Scholar 

  19. B. Chanda, D.D. Majumder, Digital Image Processing and Analysis (PHI Learning Pvt. Ltd., Delhi, 2004)

  20. A. Rosenfeld, ACM Comput. Surv. 1, 147–176 (1969)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. F. Aurenhammer, ACM Comput. Surv. 23, 345–405 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

R.B. and A.L.S. thank A. Magill for technical help. R.B. thanks S. Franchini and V. Paladino for useful discussions.

Conflict of interest

The authors declare no competing financial interests. This work was supported by the Swiss National Science Foundation (Grants no. PPOOP2-133562 and 200020-126534), the Centre d’Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL, the Leenards and Jeantet Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Balzan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balzan, R., Sellerio, A.L., Mari, D. et al. High-Precision MRI Reconstruction Algorithm for 3D Sphere Packings. Appl Magn Reson 46, 633–642 (2015). https://doi.org/10.1007/s00723-015-0677-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0677-0

Keywords

Navigation