Applied Magnetic Resonance

, Volume 46, Issue 9, pp 993–996 | Cite as

High-Field Multi-Frequency ESR in the Rare-Earth Spinel Compound CdYb2S4

  • D. Yoshizawa
  • T. Kida
  • S. Nakatsuji
  • K. Iritani
  • M. Halim
  • T. Takeuchi
  • M. HagiwaraEmail author


We have performed electron spin resonance (ESR) measurements in the low temperature magnetic-ordered state of polycrystalline samples of CdYb2S4. This material is one of the rare-earth spinel compounds in which Yb3+ ions form the pyrochlore lattice, and consequently, CdYb2S4 possesses anomalous properties caused by geometrical frustration and anisotropic terms. Some ESR signals have been detected, and their resonance fields are well-fitted by linear lines in the frequency vs. magnetic-field plane. One of the ESR modes appears to intersect the origin of this plane, suggesting a nearly gapless feature in the magnetically ordered state of this material. Two additional ESR modes appear above H c = 2.6 T, indicating that there is a field-induced phase transition at H c. Given the nearly gapless feature of CdYb2S4, we expect that the ground state of CdYb2S4 must be either the Palmer–Chalker state or the ψ 2 state.


Electron Spin Resonance Electron Spin Resonance Measurement Resonance Field Easy Plane Electron Spin Resonance Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Kalro Penc, Collin Broholm, Oleg Tchernyshyov, and Kenta Kimura for fruitful discussions. This work was partially supported by Grants-in-Aid (No. 25707030) from JSPS, and by PRESTO, JST, Japan.


  1. 1.
    A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399, 333 (1999)CrossRefADSGoogle Scholar
  2. 2.
    T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. McMorrow, S.T. Bramwell, Science 326, 415 (2009)CrossRefADSGoogle Scholar
  3. 3.
    K.A. Ross, L. Savary, B.D. Gaulin, L. Balents, Phys. Rev. X 1, 021002 (2011)Google Scholar
  4. 4.
    Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, T. Sakakibara, Nature 463, 210 (2010)CrossRefADSGoogle Scholar
  5. 5.
    K. Kimura, S. Nakatsuji, J.-J. Wen, C. Broholm, M.B. Stone, E. Nishibori, H. Sawa, Nature Commun. 4, 1934 (2013)ADSGoogle Scholar
  6. 6.
    S. Guitteny, S. Petit, E. Lhotel, J. Robert, P. Bonville, A. Forget, I. Mirebeau, Phys. Rev. B 88, 134408 (2013)CrossRefADSGoogle Scholar
  7. 7.
    L. Savary, K.A. Ross, B.D. Gaulin, J.P.C. Ruff, L. Balents, Phys. Rev. Lett. 109, 167201 (2012)CrossRefADSGoogle Scholar
  8. 8.
    K. Iritani, T. Higo, M. Halim, W. Higemoto, T. Ito, K. Kuga, S. Nakatsuji, preprintGoogle Scholar
  9. 9.
    J.A. Quilliam, K.A. Ross, A.G. Del Maestro, M.J.P. Gingras, L.R. Corruccini, J.B. Kycia, Phys. Rev. Lett. 99, 097201 (2007)CrossRefADSGoogle Scholar
  10. 10.
    S.S. Sosin, L.A. Prozorova, Phys. Rev. B 82, 094428 (2010)CrossRefADSGoogle Scholar
  11. 11.
    J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Nature 413, 48 (2001)CrossRefADSGoogle Scholar
  12. 12.
    J.J. Ishikawa, E.C.T. O’Farrell, S. Nakatsuji, Phys. Rev. B 85, 245109 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • D. Yoshizawa
    • 1
  • T. Kida
    • 1
  • S. Nakatsuji
    • 2
    • 3
  • K. Iritani
    • 2
  • M. Halim
    • 2
  • T. Takeuchi
    • 4
  • M. Hagiwara
    • 1
    Email author
  1. 1.Center for Advanced High Magnetic Field Science, Graduate School of ScienceOsaka UniversityOsakaJapan
  2. 2.Institute for Solid State PhysicsThe University of TokyoChibaJapan
  3. 3.PRESTO, Japan Science and Technology AgencySaitamaJapan
  4. 4.Low Temperature CenterOsaka UniversityOsakaJapan

Personalised recommendations