Skip to main content

Magnetic Anisotropy of Cr(III) Ions in Polymeric Oxalate Complexes as Revealed by HF-ESR Spectroscopy


Two new Cr(III) paramagnetic polymeric complexes: {[CaCr2(phen)2(C2O4)4]·0.33H2O} n (CrPhen) and {[CaCr2(bpy)2(C2O4)4]·0.83H2O} n (CrBpy), where phen = 1,10-phenanthroline and bpy = 2,2\('\)-bipyridine, have been studied by high-field high-frequency electron spin resonance (HF-ESR) spectroscopy. From the oriented powder spectra, recorded in the frequency range 83–332 GHz in magnetic fields up to 16 T, the spin-Hamiltonian parameters, \(g\), \(D\) and \(E\), have been obtained. Both chromium complexes have a small negative (easy axis) magnetic anisotropy \(|D|<1\) K. CrPhen complex is biaxial, i.e., besides axial \(D\), there is also significant rhombic zero-field splitting (ZFS) parameter, \(E\). Contrary to CrPhen, CrBpy complex is uniaxial, but described by two sets of axial ZFS parameters. Despite very similar crystallographic structures of both complexes, HF-ESR spectroscopy resolved the existence of two magnetically inequivalent Cr(III) ions in CrBpy complex. The results fully support the earlier X-ray, SQUID magnetization and powder X-band ESR studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  2. O. Kahn, Molecular Magnetism (Wiley-VCH Inc., Weinheim, 1993)

    Google Scholar 

  3. J. Nehrkorn, B.M. Martins, K. Holldack, S. Stoll, H. Dobbek, R. Bittl, A. Schnegg, Mol. Phys. 111, 2696 (2013)

    Article  ADS  Google Scholar 

  4. Y. Krupskaya, A. Alfonsov, A. Parameswaran, V. Kataev, R. Klingeler, G. Steinfeld, N. Beyer, M. Gressenbuch, B. Kersting, B. Büchner, Chem. Phys. Chem. 11, 1961 (2010)

    Google Scholar 

  5. A. Das, K. Gieb, Y. Krupskaya, S. Demeshko, S. Dechert, R. Klingeler, V. Kataev, B. Büchner, P. Müller, F. Meyer, J. Am. Chem. Soc. 133, 3433 (2011)

    Article  Google Scholar 

  6. M. Clemente-Leon, E. Coronado, C. Marti-Gastaldo, F.M. Romero, Chem. Soc. Rev. 40, 473 (2011)

    Article  Google Scholar 

  7. G. Marinescu, M. Andruh, F. Lloret, M. Julve, Coord. Chem. Rev. 255, 161 (2011)

    Article  Google Scholar 

  8. L. Androš, M. Jurić, J. Popović, D. Pajić, K. Zadro, K. Molčanov, D. Žilić, P. Planinić, Eur. J. Inorg. Chem., 5703–5713 (2014)

  9. L. Androš, M. Jurić, K. Molčanov, P. Planinić, Dalton Trans. 41, 14611 (2012)

    Article  Google Scholar 

  10. C. Golze, A. Alfonsov, R. Klingeler, B. Büchner, V. Kataev, C. Mennerich, H.H. Klauss, M. Goiran, J.M. Broto, H. Rakoto, S. Demeshko, G. Leibeling, F. Meyer, Phys. Rev. B 73, 224403 (2006)

    Article  ADS  Google Scholar 

  11. P. Chaudhuri, V. Kataev, B. Büchner, H.H. Klauss, B. Kersting, F. Meyer, Coord. Chem. Rev. 253, 2261 (2009)

    Article  Google Scholar 

  12. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  Google Scholar 

  13. N. Novosel, D. Žilić, D. Pajić, M. Jurić, B. Perić, K. Zadro, B. Rakvin, P. Planinić, Solid State Sci. 10, 1387 (2008)

    Article  ADS  Google Scholar 

  14. A. Carrington, A.D. McLachlan, Introduction to Magnetic Resonance (Harper and Row, New York, 1967)

    Google Scholar 

  15. S. Khanra, B. Biswas, C. Golze, B. Buchner, V. Kataev, T. Weyhermuller, P. Chaudhuri, Dalton Trans., 481–487 (2007)

  16. M. Jurić, P. Planinić, D. Žilić, B. Rakvin, B. Prugovečki, D. Matković-Čalogović, J. Mol. Struct. 924–926, 73 (2009)

    Google Scholar 

  17. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  ADS  Google Scholar 

  18. J.A. Weil, J.R. Bolton, J.E. Wertz, Electron Paramagnetic Resonance (Wiley, New York, 1994)

    Google Scholar 

  19. A. Bencini, D. Gatteschi, Electron Paramagnetic Resonance of Exchange Coupled Systems (Springer, Berlin, 1990)

    Book  Google Scholar 

  20. J. Telser, L.A. Pardi, J. Krzystek, L.C. Brunel, Inorg. Chem. 37, 5769 (1998)

    Article  Google Scholar 

  21. J. Wang, Z. Wang, R.J. Clark, A. Ozarowski, J. van Tol, N.S. Dalal, Polyhedron 30, 3058 (2011)

    Article  Google Scholar 

Download references


This research was supported in part by the Ministry of Science, Education and Sports of the Republic of Croatia (Projects 098-0982915-2939 and 098-0982904-2946). The work was supported in part by the Deutsche Forschungsgemeinschaft through FOR1154 “Towards Molecular Spintronics”. The work of D. Žilić at the IFW Dresden was realized through the Croatian Science Foundation (HRZZ) postdoc scholarship (Project 02.03/164).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dijana Žilić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Žilić, D., Androš, L., Krupskaya, Y. et al. Magnetic Anisotropy of Cr(III) Ions in Polymeric Oxalate Complexes as Revealed by HF-ESR Spectroscopy. Appl Magn Reson 46, 309–321 (2015).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Electron Spin Resonance
  • Electron Spin Resonance Spectrum
  • Magnetic Anisotropy
  • Electron Spin Resonance Line
  • Resonance Branch