Dielectric Ceramic EPR Resonators for Low Temperature Spectroscopy at X-band Frequencies


The performance of new dielectric ceramic resonators (DRs) for continuous wave (cw) X-band electron paramagnetic resonance (EPR) spectroscopy is investigated at room temperature and low temperatures (77, 6 K). The DRs with high dielectric constants of about \(\varepsilon _r = 80\), featuring low residual paramagnetic impurities, have been developed and produced on the basis of barium lanthanide titanates solid solutions with the general formula Ba\(_{6-x}\)Ln\(_{8+2x/3}\)Ti\(_{18}\)O\(_{54}\) (Ln = Sm, Nd) that demonstrate at once low dielectric losses in the microwave range (\(\tan \delta = 7\)–14 × 10−4 at 10 GHz) and appropriate temperature stability of the dielectric constant (\(\tau _\varepsilon = \pm\)5 ppm/K). They were optimized for samples with small dimensions and can be used in commercial Oxford instruments flow cryostats if the coupling is done via cavity resonators. We found a maximal EPR signal enhancement by a factor up to 74 at 6 K. The increases of quality and filling factors as well as that of the microwave (mw) \(B_1\)-field in the resonator setup are discussed in dependence on temperature. We show that the absolute sensitivity gain must be related to that increase in the mw field and the remaining relative gain of the SNR is about 18 for small samples. The developed DRs have shown a good potential in EPR application as reliable and easy-to-use components allowing research of thin films and in particular small crystalline structures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    M. Jaworski, A. Sienkiewicz, C.P. Scholes, J. Magn. Reson. 124, 87 (1997)

    ADS  Article  Google Scholar 

  2. 2.

    A. Sienkiewicz, K. Qu, C.P. Scholes, Rev. Sci. Instrum. 65(1), 68 (1994)

    ADS  Article  Google Scholar 

  3. 3.

    G. Lassmann, P.P. Schmidt, W. Lubitz, J. Magn. Reson. 172, 312 (2005)

    ADS  Article  Google Scholar 

  4. 4.

    M.W. Pospieszalski, IEEE Trans. Microwave Theory Technol. MIT 27(3), 233 (1979)

    ADS  Article  Google Scholar 

  5. 5.

    S. del Monaco, J. Brivati, G. Gualtieri, A. Sotgiu, Rev. Sci. Instrum. 66(10), 5104 (1995)

    ADS  Article  Google Scholar 

  6. 6.

    A. Blank, E. Stavitski, H. Levanon, F. Gubaydullin, Rev. Sci. Instrum. 74(5), 2853 (2003)

    ADS  Article  Google Scholar 

  7. 7.

    S.M. Mattar, S.Y. ElNaggar, J. Magn. Reson. 209, 174 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    I.S. Golovina, S.P. Kolesnik, I.N. Geifman, A.G. Belous, Rev. Sci. Instrum. 81(4), 044702 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    A. Sienkiewicz, B. Vileno, S. Garaj, M. Jaworski, L. Forro, J. Magn. Reson. 177(2), 261 (2005)

    ADS  Article  Google Scholar 

  10. 10.

    S.M. Mattar, A.H. Emwas, Chem. Phys. Lett. 368, 724 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    I. Golovina, I. Geifman, A. Belous, J. Magn. Reson. 195, 52 (2008)

    ADS  Article  Google Scholar 

  12. 12.

    I. Geifman, I. Golovina, V. Kofman, E. Zusmanov, Ferroelectrics 234(1), 81 (1999)

    Article  Google Scholar 

  13. 13.

    I. Geifman, I. Golovina, Concepts Magn. Reson. 26B(1), 46 (2005)

    Article  Google Scholar 

  14. 14.

    H.R. Yi, N. Klein, IEEE Trans. Appl. Superconductivity 11(1), 489 (2001)

    Article  Google Scholar 

  15. 15.

    A. Blank, E. Suhovoy, R. Halevy, L. Shtirberg, W. Harneit, Phys. Chem. Chem. Phys. 11(31), 6689 (2009)

    Article  Google Scholar 

  16. 16.

    A.A. Kishk, Y.M.M. Antar, in Antenna Engineering Handbook, ed. by J.L. Volakis (McGraw-Hill, New York, 2007), chap. 17

  17. 17.

    D. Kajfez, P. Guillon (eds.), Dielectric Resonators (Artech House, Dedham, MA, 1986)

    Google Scholar 

  18. 18.

    Oxford Instruments, Cryostats for Electron Spin Resonance Spectroscopy. http://www.oxford-instruments.com, DF OI64802104 (2004).

  19. 19.

    R.R. Mett, J.W. Sidabras, I.S. Golovina, J.S. Hyde, Rev. Sci. Instrum. 79(9) (2008).

  20. 20.

    S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 245, 50 (2014)

    ADS  Article  Google Scholar 

  21. 21.

    S.Y. Elnaggar, R. Tervo, S.M. Mattar, J. Magn. Reson. 238, 1 (2014)

    ADS  Article  Google Scholar 

  22. 22.

    Y.E. Nesmelov, J.T. Surek, D.D. Thomas, J. Magn. Reson. 153, 7 (2001)

    ADS  Article  Google Scholar 

  23. 23.

    C.P. Poole Jr, Electron Spin Resonance (Interscience Publishers, New York, 1967)

    Google Scholar 

  24. 24.

    A. Belous, O. Ovchar, M. Valant, D. Suvorov, J. Appl. Phys. 92(7), 3917 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    J.E. Wertz, P. Auzins, Phys. Rev. 106, 484 (1957)

    ADS  Article  Google Scholar 

  26. 26.

    J. Lincke, D. Lässig, M. Kobalz, J. Bergmann, M. Handke, J. Möllmer, M. Lange, C. Roth, A. Möller, R. Staudt, H. Krautscheid, Inorg. Chem. 51(14), 7579 (2012)

    Article  Google Scholar 

  27. 27.

    R. Fricke, H.G. Jerschkewitz, G. Öhlmann, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases 82(11), 3479 (1986).

Download references


We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support within the priority programs 1362 and 1601. Further our thanks goes out to M. Kobalz and H. Krautscheid of the inorganic chemistry group at Leipzig University for the preparation of the Cu-MOF samples.

Author information



Corresponding author

Correspondence to Andreas Pöppl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 50 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friedländer, S., Ovchar, O., Voigt, H. et al. Dielectric Ceramic EPR Resonators for Low Temperature Spectroscopy at X-band Frequencies. Appl Magn Reson 46, 33–48 (2015). https://doi.org/10.1007/s00723-014-0611-x

Download citation


  • Electron Paramagnetic Resonance
  • Electron Paramagnetic Resonance Spectrum
  • Electron Paramagnetic Resonance Signal
  • Cavity Resonator
  • Couple Mode Theory