Skip to main content
Log in

Proton-Electron Double-Resonance Imaging of pH Using Phosphonated Trityl Probe

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Variable radio frequency proton-electron double-resonance imaging (VRF PEDRI) enables extracting a functional map from a limited number of images acquired at pre-selected EPR frequencies using specifically designed paramagnetic probes with high-quality spatial resolution and short acquisition times. In this work we explored the potential of VRF PEDRI for pH mapping of aqueous samples using recently synthesized pH-sensitive phosphonated trityl radical, pTR. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of pTR probe allows for a pH map extraction. Long relaxation times of pTR allow for pH mapping at EPR irradiation power as low as 1.25 W during 130 s acquisition time with spatial resolution of about 1 mm. This is particularly important for in vivo applications enabling one to avoid sample overheating by reducing RF power deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.J. Lurie, D.M. Bussell, L.H. Bell, J.R. Mallard, J. Magn. Reson. 76, 366–370 (1988)

    ADS  Google Scholar 

  2. K. Golman, I. Leunbach, J.H. Ardenkjaer-Larsen, G.J. Ehnholm, L.G. Wistrand, J.S. Petersson, A. Järvi, S. Vahasalo, Acta Radiol. 39, 10–17 (1998)

    Article  Google Scholar 

  3. A.W. Overhauser, Phys. Rev. 92, 411–415 (1953)

    Article  MATH  ADS  Google Scholar 

  4. D.J. Lurie, I. Nicholson, M.A. Foster, J.R. Mallard, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci. 333, 453–456 (1990)

    Article  ADS  Google Scholar 

  5. M.A. Foster, I.A. Grigor’ev, D.J. Lurie, V.V. Khramtsov, S. McCallum, I. Panagiotelis, J.M. Hutchison, A. Koptioug, I. Nicholson, Magn. Reson. Med. 49, 558–567 (2003)

    Article  Google Scholar 

  6. M.C. Krishna, S. English, K. Yamada, J. Yoo, R. Murugesan, N. Devasahayam, J.A. Cook, K. Golman, J.H. Ardenkjaer-Larsen, S. Subramanian, J.B. Mitchell, Proc. Natl. Acad. Sci. USA. 99, 2216–2221 (2002)

    Article  ADS  Google Scholar 

  7. V.V. Khramtsov, G.L. Caia, K. Shet, E. Kesselring, S. Petryakov, J.L. Zweier, A. Samouilov, J. Magn. Reson. 202, 267–273 (2010)

    Article  ADS  Google Scholar 

  8. O.V. Efimova, Z. Sun, S. Petryakov, E. Kesselring, G.L. Caia, D. Johnson, J.L. Zweier, V.V. Khramtsov, A. Samouilov, J. Magn. Reson. 209, 227–232 (2011)

    Article  ADS  Google Scholar 

  9. A. Samouilov, O.V. Efimova, A.A. Bobko, Z. Sun, S. Petryakov, T.D. Eubank, D.G. Trofimov, I.A. Kirilyuk,A. Grigor’ev, W. Takahashi, J.L. Zweier, V.V. Khramtsov, Analyt. Chem. 86, 1045–1052 (2014)

    Article  Google Scholar 

  10. J.H. Ardenkjaer-Larsen, I. Laursen, I. Leunbach, G. Ehnholm, L.G. Wistrand, J.S. Petersson, K. Golman, J. Magn. Reson. 133, 1–12 (1998)

    Article  ADS  Google Scholar 

  11. L. Yong, J. Harbridge, R.W. Quine, G.A. Rinard, S.S. Eaton, G.R. Eaton, C. Mailer, E. Barth, H.J. Halpern, J. Magn. Reson. 152, 156–161 (2001)

    Article  ADS  Google Scholar 

  12. S. Anderson, K. Golman, F. Rise, H. Wikstro¨m, L.G. Wistrand, U.S. Patent, 5,530,140 (1996)

  13. M. Elas, B.B. Williams, A. Parasca, C. Mailer, C.A. Pelizzari, M.A. Lewis, J.N. River, G.S. Karczmar, E.D. Barth, H.J. Halpern, Magn. Reson. Med. 49, 682–691 (2003)

    Article  Google Scholar 

  14. I. Dhimitruka, A.A. Bobko, C.M. Hadad, J.L. Zweier, V.V. Khramtsov, J. Am. Chem. Soc. 130, 10780–10787 (2008)

    Article  Google Scholar 

  15. A.A. Bobko, I. Dhimitruka, D.A. Komarov, V.V. Khramtsov, Analyt. Chem. 84, 6054–6060 (2012)

    Article  Google Scholar 

  16. I. Dhimitruka, A.A. Bobko, T.D. Eubank, D.A. Komarov, V.V. Khramtsov, J. Am. Chem. Soc. 135, 5904–5910 (2013)

    Article  Google Scholar 

  17. K. Shet, G.L. Caia, E. Kesselring, A. Samouilov, S. Petryakov, D.J. Lurie, J.L. Zweier, J. Magn. Reson. 205, 202–208 (2010)

    Article  ADS  Google Scholar 

  18. S. Petryakov, A. Samouilov, E. Kesselring, G.L. Caia, Z. Sun, J.L. Zweier, J. Magn. Reson. 205, 1–8 (2010)

    Article  ADS  Google Scholar 

  19. S. Petryakov, A. Samouilov, M. Roytenberg, H. Li, J.L. Zweier, Magn. Reson. Med. 56, 654–659 (2006)

    Article  Google Scholar 

  20. D. Häussinger (ed.), pH Homeostasis: Mechanisms and Control (Academic Press, London, 1988), p. 479

  21. V. Estrella, T. Chen, M. Lloyd, J. Wojtkowiak, H.H. Cornnell, A. Ibrahim-Hashim, K. Bailey, Y. Balagurunathan, J.M. Rothberg, B.F. Sloane, J. Johnson, R.A. Gatenby, R.J. Gillies, Cancer Res. 73, 1524–1535 (2013)

    Article  Google Scholar 

  22. S. Kapur, J.A. Wasserstrom, J.E. Kelly, A.H. Kadish, G.L. Aistrup, Am. J. Physiol. Heart Circ. Physio. 296, H1491–H1512 (2009)

    Article  Google Scholar 

  23. K. Beppu, T. Sasaki, K.F. Tanaka, A. Yamanaka, Y. Fukazawa, R. Shigemoto, K. Matsui, Neuron. 81, 314–320 (2014)

    Article  Google Scholar 

  24. D.Y. Sue, K. Wasserman, R.B. Moricca, R. Casaburi, Chest 94, 931–938 (1988)

    Article  Google Scholar 

  25. J.D. Kopple, K. Kalantar-Zadeh, R. Mehrotra, Kidney. Intern. 67, S21–S27 (2005)

    Article  Google Scholar 

  26. L. Calorini, S. Peppicelli, F. Bianchini, Experimental. Oncol. 34, 79–84 (2012)

    Google Scholar 

  27. X. Zhang, Y. Lin, R.J. Gillies, J. Nucl. Med. 51, 1167–1170 (2010)

    Article  Google Scholar 

  28. L. Wang, C. Li, J. Mater. Chem. 21, 15862–15871 (2011)

    Article  Google Scholar 

  29. S. Macholl, M.S. Morrison, P. Iveson, B.E. Arbo, O.A. Andreev, Y.K. Reshetnyak, D.M. Engelman, E. Johannesen, Mol. Imaging. Biol. 14, 725–734 (2012)

    Article  Google Scholar 

  30. R.J. Gillies, N. Raghunand, M.L. Garcia-Martin, R.A. Gatenby, IEEE Eng. Med. Biol. Mag. 23, 57–64 (2004)

    Article  Google Scholar 

  31. A.M. Kenwright, I. Kuprov, E. De Luca, D. Parker, S.U. Pandya, P.K. Senanayake, D.G. Smith, Chem. Commun. 22, 2514–2516 (2008)

    Article  Google Scholar 

  32. F.A. Gallagher, M.I. Kettunen, S.E. Day, D.E. Hu, J.H. Ardenkjaer-Larsen, R. Zandt, P.R. Jensen, M. Karlsson, K. Golman, M.H. Lerche, K.M. Brindle, Nature. 453, 940–943 (2008)

    Article  ADS  Google Scholar 

  33. V.V. Khramtsov, I.A. Grigor’ev, M.A. Foster, D.J. Lurie, Antiox. Redox. Signal. 6, 667–676 (2004)

    Article  Google Scholar 

  34. J. Goodwin, K. Yachi, M. Nagane, H. Yasui, Y. Miyake, O. Inanami, A.A. Bobko, V.V. Khramtsov, H. Hirata, NMR. Biomed. 27, 453–458 (2014)

    Article  Google Scholar 

  35. A.A. Bobko, T.D. Eubank, J.L. Voorhees, O.V. Efimova, I.A. Kirilyuk, S. Petryakov, D.G. Trofimov, C.B. Marsh, J.L. Zweier, I.A. Grigor’ev, A. Samouilov, V.V. Khramtsov, Magn. Reson. Med. 67, 1827–1836 (2012)

    Article  Google Scholar 

  36. V.V. Khramtsov, Curr. Org. Chem. 9, 909–923 (2005)

    Article  Google Scholar 

  37. S. Koda, J. Goodwin, V.V. Khramtsov, H. Fujii, H. Hirata, Analyt. Chem. 84, 3833–3837 (2012)

    Article  Google Scholar 

  38. A.A. Bobko, I. Dhimitruka, J.L. Zweier, V.V. Khramtsov, Angew. Chem. Int. Edit. 53, 2735–2738 (2014)

    Article  Google Scholar 

  39. O.V. Efimova, G.L. Caia, Z. Sun, S. Petryakov, E. Kesselring, A. Samouilov, J.L. Zweier, J. Magn. Reson. 212, 197–203 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a NIH Grants EB014542 and EB016096grant, and Japan Society for the Promotion of Science (JSPS) grant 26249057 to H.H. V.V.K. acknowledges JSPS for invitation fellowship S-14064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery V. Khramtsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, W., Bobko, A.A., Dhimitruka, I. et al. Proton-Electron Double-Resonance Imaging of pH Using Phosphonated Trityl Probe. Appl Magn Reson 45, 817–826 (2014). https://doi.org/10.1007/s00723-014-0570-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0570-2

Keywords

Navigation