Skip to main content
Log in

Quantum and Classical Correlations in the Solid-State NMR Free Induction Decay

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The free induction decay (FID) of the transverse magnetization in a dipolar-coupled rigid lattice is a fundamental problem in magnetic resonance and in the theory of many-body systems. As it was shown earlier the FID shapes for the systems of classical magnetic moments and for quantum nuclear spin ones coincide if there are many nearly equivalent nearest neighbors n in a solid lattice. In this paper, we reduce a multispin density matrix of above system to a two-spin matrix. Then we obtain analytic expressions for the mutual information and the quantum and classical parts of correlations at the arbitrary spin quantum number S, in the high-temperature approximation. The time dependence of these functions is expressed via the derivative of the FID shape. To extract classical correlations for S > 1/2 we provide generalized POVM measurement (positive-operator-valued measure) using the basis of spin coherent states. We show that in every pair of spins the portion of quantum correlations changes from 1/2 to 1/(S + 1) when S is growing up, and quantum properties disappear completely only if S → ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abraham, M. Goldman, Nuclear Magnetism: Order and Disorder (Univ. Press, Oxford, 1982)

    Google Scholar 

  2. J.A. Jones, Prog. NMR Spectrosc. 59, 91 (2011)

  3. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  4. S.J. Knak Jensen, O. Platz, Phys. Rev. B 7, 31 (1973)

    Article  ADS  Google Scholar 

  5. A.A. Lundin, V.E. Zobov, J. Magn. Reson. 26, 229 (1977)

  6. I.J. Lowe, R.E. Norberg, Phys. Rev. 107, 46 (1957)

    Article  ADS  MATH  Google Scholar 

  7. E.B. Fel’dman, A.I. Zenchuk, Phys. Rev. A 86, 012303 (2012)

    Article  ADS  Google Scholar 

  8. E.B. Fel’dman, A.I. Zenchuk, Quantum Inf. Process. 13, 201 (2014)

    Article  MATH  Google Scholar 

  9. E.B. Fel’dman, E.I. Kuznetsova, M.A. Yurishchev, J. Phys. A: Math. Theor. 45, 475304 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. V.E. Zobov, Teor. Math. Phys. 177, 1377 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Preskill, Quantum Information and Computation. Lecture Notes for Physics 229, California Institute of Technology, (1998)

  12. F.T. Arrechi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev. A 6, 2211 (1972)

    Article  ADS  Google Scholar 

  13. F. Lado, J.D. Memory, G.W. Parker, Phys. Rev. B 4, 1406 (1971)

    Article  ADS  Google Scholar 

  14. M.H. Lee, Phys. Rev. Lett. 52, 1579 (1984)

    Article  ADS  Google Scholar 

  15. V.E. Zobov, A.A. Lundin, JETP 103, 904 (2006)

    Article  ADS  Google Scholar 

  16. B. Groisman, S. Popescu, A. Winter, Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zobov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobov, V.E., Lundin, A.A. Quantum and Classical Correlations in the Solid-State NMR Free Induction Decay. Appl Magn Reson 45, 1169–1177 (2014). https://doi.org/10.1007/s00723-014-0562-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0562-2

Keywords

Navigation