Skip to main content

Magnetic Study of Nanostructural Composite Material Based on Cobalt Compounds and Porous Silicon

Abstract

In present work, an investigation of a magnetically ordered material, which is a composite structure obtained by embedding of cobalt-containing substance into pores of silicon matrix, was performed. The samples were characterized by steady-state magnetometry and electron microscopy. The methods of longitudinal nonlinear response to a weak ac magnetic field and registration of electron magnetic resonance were used for detail study of their properties. It was established that the material forms a structure of ferromagnetic particles at the inner surface of pores. It was agued that they are mainly nonmetallic magnetic particles like Co2B and/or Co3B. The possibility to apply the concept of blocking temperature to specify the magnetic behavior of the compound on temperature confirmed the single-domain state of these particles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    Here we use the term “magnetic”, since one can expect the presence of both paramagnetic and ferromagnetic fractions in the sample and the observation of electron paramagnetic and ferromagnetic resonances, respectively.

References

  1. 1.

    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  ADS  Google Scholar 

  2. 2.

    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgens, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  Google Scholar 

  3. 3.

    M. Hartmann, L. Kevan, Chem. Rev. 99, 635 (1999)

    Article  Google Scholar 

  4. 4.

    S. Lim, N. Li, F. Fang, M. Pinault, C. Zoican, C. Wang, T. Fadel, L.D. Pfefferle, G.L. Haller, J. Phys. Chem. C 112, 12442 (2008)

    Article  Google Scholar 

  5. 5.

    R. Herino, G. Bomchil, K. Barla, C. Bertrand, J. Ginoux, J. Electrochem. Soc. 134, 1994 (1987)

    Article  Google Scholar 

  6. 6.

    A. Bsiesy, J.C. Vial, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, A. Wasiela, A. Halimaoui, G. Bomchil, Surf. Sci. 254, 195 (1991)

    Article  ADS  Google Scholar 

  7. 7.

    P. Granitzer, K. Rumpf, Materials 4, 908 (2011)

    Article  ADS  Google Scholar 

  8. 8.

    Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, ed. by L.I. Trakhtenberg, S.H. Lin, O.J. Ilegbusi. Thin Films and Nanostructures, vol 34 (Academic Press, Oxford, 2007), p. 800

  9. 9.

    J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, J. Appl. Phys. 76(10), 6316–6318 (1994)

    Article  ADS  Google Scholar 

  10. 10.

    C. Petit, M.P. Pileni, J. Magn. Magn. Mater. 166, 82–90 (1997)

    Article  ADS  Google Scholar 

  11. 11.

    A. Lashkul, I.V. Pleshakov, N.V. Glebova, A.A. Nechitailov, YuI Kuzmin, V.V. Matveev, E.N. Pyatyshev, A.N. Kazakin, A.V. Glukhovskoi, Tech. Phys. Lett. 37(7), 664–666 (2011)

    Article  Google Scholar 

  12. 12.

    P.J. Cai, H. Wang, L.H. Liu, L. Zhang, J. Ceram. Soc. Jpn. 118, 1102 (2010)

    Article  Google Scholar 

  13. 13.

    L. Yiping, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, J. Magn. Magn. Mater. 79, 321–326 (1989)

    Article  ADS  Google Scholar 

  14. 14.

    V.A. Ryzhov, I.I. Larionov, V.N. Fomichev. Zh. Tekh. Fiz., 66, 183 (1996) [Tech. Phys., 41, 620 (1996)]

    Google Scholar 

  15. 15.

    A.V. Lazuta, I.I. Larionov, V.A. Ryzhov, Sov. Phys. JETP 73, 1086–1095 (1991)

    Google Scholar 

  16. 16.

    V.A. Ryzhov, E.I. Zavatskii, V.A. Solov’ev, I.A. Kisilev, V.N. Fomichev, V.A. Bikineev, Tech. Phys. 40, 71–77 (1995)

    Google Scholar 

  17. 17.

    A. Aharony, Phys. Rev. 177, 793 (1969)

    Article  ADS  Google Scholar 

  18. 18.

    D.A. Garanin, Phys. Rev. E 54, 3250 (1996)

    Article  ADS  Google Scholar 

  19. 19.

    Y.D. Zhang, J.I. Budnick, W.A. Hines, C.L. Chien, J.Q. Xiao, Appl. Phys. Lett. 72(16), 2053–2055 (1998)

    Article  ADS  Google Scholar 

  20. 20.

    S. Bedanta, W. Kleemann, J. Phys. D Appl. Phys. 42, 013001 (2009)

    Article  ADS  Google Scholar 

  21. 21.

    B.D. Gullity, C.D. Graham, Introduction to Magnetic Materials (IEEE Press, Wiley, New York, 2009)

    Google Scholar 

  22. 22.

    N.M. Souza-Neto, A.Y. Ramos, H.C.N. Tolentino, E. Favre-Nicolin, L. Ranno, Phys. Rev. B 70, 174451 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to P.L. Molkanov (St.-Petersburg Nuclear Physics Institute) for help in M 2 measurements. This work was partly supported by the grant of Presidium of Russian Academy of Sciences P-03, and by the grant of Scholarship of President of Russian Federation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Ryzhov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ryzhov, V.A., Pleshakov, I.V., Nechitailov, A.A. et al. Magnetic Study of Nanostructural Composite Material Based on Cobalt Compounds and Porous Silicon. Appl Magn Reson 45, 339–352 (2014). https://doi.org/10.1007/s00723-014-0527-5

Download citation

Keywords

  • Porous Silicon
  • Magnetic Anisotropy
  • Zero Field Cool
  • Ferromagnetic Particle
  • Electron Magnetic Resonance