Advertisement

Applied Magnetic Resonance

, Volume 45, Issue 4, pp 339–352 | Cite as

Magnetic Study of Nanostructural Composite Material Based on Cobalt Compounds and Porous Silicon

  • V. A. Ryzhov
  • I. V. Pleshakov
  • A. A. Nechitailov
  • N. V. Glebova
  • E. N. Pyatyshev
  • A. V. Malkova
  • I. A. Kiselev
  • V. V. Matveev
Article

Abstract

In present work, an investigation of a magnetically ordered material, which is a composite structure obtained by embedding of cobalt-containing substance into pores of silicon matrix, was performed. The samples were characterized by steady-state magnetometry and electron microscopy. The methods of longitudinal nonlinear response to a weak ac magnetic field and registration of electron magnetic resonance were used for detail study of their properties. It was established that the material forms a structure of ferromagnetic particles at the inner surface of pores. It was agued that they are mainly nonmetallic magnetic particles like Co2B and/or Co3B. The possibility to apply the concept of blocking temperature to specify the magnetic behavior of the compound on temperature confirmed the single-domain state of these particles.

Keywords

Porous Silicon Magnetic Anisotropy Zero Field Cool Ferromagnetic Particle Electron Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to P.L. Molkanov (St.-Petersburg Nuclear Physics Institute) for help in M 2 measurements. This work was partly supported by the grant of Presidium of Russian Academy of Sciences P-03, and by the grant of Scholarship of President of Russian Federation.

References

  1. 1.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)CrossRefADSGoogle Scholar
  2. 2.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgens, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  3. 3.
    M. Hartmann, L. Kevan, Chem. Rev. 99, 635 (1999)CrossRefGoogle Scholar
  4. 4.
    S. Lim, N. Li, F. Fang, M. Pinault, C. Zoican, C. Wang, T. Fadel, L.D. Pfefferle, G.L. Haller, J. Phys. Chem. C 112, 12442 (2008)CrossRefGoogle Scholar
  5. 5.
    R. Herino, G. Bomchil, K. Barla, C. Bertrand, J. Ginoux, J. Electrochem. Soc. 134, 1994 (1987)CrossRefGoogle Scholar
  6. 6.
    A. Bsiesy, J.C. Vial, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, A. Wasiela, A. Halimaoui, G. Bomchil, Surf. Sci. 254, 195 (1991)CrossRefADSGoogle Scholar
  7. 7.
    P. Granitzer, K. Rumpf, Materials 4, 908 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, ed. by L.I. Trakhtenberg, S.H. Lin, O.J. Ilegbusi. Thin Films and Nanostructures, vol 34 (Academic Press, Oxford, 2007), p. 800Google Scholar
  9. 9.
    J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, J. Appl. Phys. 76(10), 6316–6318 (1994)CrossRefADSGoogle Scholar
  10. 10.
    C. Petit, M.P. Pileni, J. Magn. Magn. Mater. 166, 82–90 (1997)CrossRefADSGoogle Scholar
  11. 11.
    A. Lashkul, I.V. Pleshakov, N.V. Glebova, A.A. Nechitailov, YuI Kuzmin, V.V. Matveev, E.N. Pyatyshev, A.N. Kazakin, A.V. Glukhovskoi, Tech. Phys. Lett. 37(7), 664–666 (2011)CrossRefGoogle Scholar
  12. 12.
    P.J. Cai, H. Wang, L.H. Liu, L. Zhang, J. Ceram. Soc. Jpn. 118, 1102 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Yiping, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, J. Magn. Magn. Mater. 79, 321–326 (1989)CrossRefADSGoogle Scholar
  14. 14.
    V.A. Ryzhov, I.I. Larionov, V.N. Fomichev. Zh. Tekh. Fiz., 66, 183 (1996) [Tech. Phys., 41, 620 (1996)]Google Scholar
  15. 15.
    A.V. Lazuta, I.I. Larionov, V.A. Ryzhov, Sov. Phys. JETP 73, 1086–1095 (1991)Google Scholar
  16. 16.
    V.A. Ryzhov, E.I. Zavatskii, V.A. Solov’ev, I.A. Kisilev, V.N. Fomichev, V.A. Bikineev, Tech. Phys. 40, 71–77 (1995)Google Scholar
  17. 17.
    A. Aharony, Phys. Rev. 177, 793 (1969)CrossRefADSGoogle Scholar
  18. 18.
    D.A. Garanin, Phys. Rev. E 54, 3250 (1996)CrossRefADSGoogle Scholar
  19. 19.
    Y.D. Zhang, J.I. Budnick, W.A. Hines, C.L. Chien, J.Q. Xiao, Appl. Phys. Lett. 72(16), 2053–2055 (1998)CrossRefADSGoogle Scholar
  20. 20.
    S. Bedanta, W. Kleemann, J. Phys. D Appl. Phys. 42, 013001 (2009)CrossRefADSGoogle Scholar
  21. 21.
    B.D. Gullity, C.D. Graham, Introduction to Magnetic Materials (IEEE Press, Wiley, New York, 2009)Google Scholar
  22. 22.
    N.M. Souza-Neto, A.Y. Ramos, H.C.N. Tolentino, E. Favre-Nicolin, L. Ranno, Phys. Rev. B 70, 174451 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • V. A. Ryzhov
    • 1
  • I. V. Pleshakov
    • 2
    • 3
  • A. A. Nechitailov
    • 2
  • N. V. Glebova
    • 2
  • E. N. Pyatyshev
    • 3
  • A. V. Malkova
    • 4
  • I. A. Kiselev
    • 1
  • V. V. Matveev
    • 4
  1. 1.Petersburg Nuclear Physics Institute, NRC Kurchatov InstituteGatchinaRussia
  2. 2.Ioffe Physical-Technical Institute of the Russian Academy of SciencesSaint PetersburgRussia
  3. 3.Saint Petersburg State Polytechnical UniversitySaint PetersburgRussia
  4. 4.Faculty of PhysicsSt. Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations