Skip to main content
Log in

NMR Investigations of the Protonic Transport Mechanism in Composed Materials on the Basis of Cesium Acid Sulfates and Phosphates

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The composite materials Cs(HSO4)1−x (H2PO4) x were investigated by X-ray phase analysis, differential scanning calorimetry, nuclear magnetic resonance (NMR) relaxation, pulsed field gradient NMR (PFG-NMR) and impedance spectroscopy. Three composite materials types x = 0.1 ÷ 0.3 mixture CsHSO4, α-Cs3(HSO4)2(H2PO4), β-Cs3(HSO4)2.5(H2PO4)0.5—compositions of area I; x = 0.4 ÷ 0.5 mixture α-Cs3(HSO4)2(H2PO4) and Cs2(HSO4)(H2PO4)—compositions of area II; x = 0.6 ÷ 0.9 mixture Cs2(HSO4)(H2PO4) and CsH2PO4—compositions of area III, were synthesized. The phase transition temperature from the low-to-high conductive phase for obtained composite materials is notably below (about 100 °C) than that for the individual components. The proton self-diffusion coefficients measured by PFG-NMR are lower than the diffusion coefficients calculated from proton conductivities data. The correlation times τ d controlling the 31P–1H magnetic dipole–dipole interaction were calculated according to data of the spin–lattice relaxation on 31P nuclei. The self-diffusion coefficients estimated from the Einstein equation are in good agreement with the experimental self-diffusion coefficients measured by PFG-NMR. It confirms the fact that the proton mobility is caused by the rotation of PO4 anion tetrahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.H. Colomban, A. Novak, in Chemistry of Solid State Materials, Proton Conductors, vol. 2, ed. by P.H. Colomban (Cambridge University Press, Cambridge, 1992), p. 165

    Google Scholar 

  2. A.I. Baranov, V.P. Khiznichenko, V.A. Sandler, L.A. Shuvalov, Ferroelectrics 81, 183 (1988)

    Article  Google Scholar 

  3. F. Romain, A. Novak, J. Mol. Struct. 263, 69 (1991)

    Article  ADS  Google Scholar 

  4. W. Bronowska, J. Chem. Phys. 114(1), 611 (2001)

    Article  ADS  Google Scholar 

  5. J. Otomo, N. Minagawa, C. Wen, K. Eguchi, H. Takahashi, Solid State Ionics 156, 357 (2003)

    Article  Google Scholar 

  6. S.M. Haile, D.A. Boysen, C.R.I. Chisholm, R.B. Merle, Nature 410, 910 (2001)

    Article  ADS  Google Scholar 

  7. D.A. Boysen, T. Uda, C.R.I. Chisholm, S.M. Haile, Science 303, 68 (2004)

    Article  ADS  Google Scholar 

  8. G.V. Lavrova, M.V. Russkhih, V.G. Ponomareva, N.F. Uvarov, Russ. J. Electrochem. 41, 485 (2005)

    Article  Google Scholar 

  9. A.I. Baranov, L.A. Shuvalov, N.M. Shchagina, JETP Lett. 36, 459 (1982)

    ADS  Google Scholar 

  10. Y. Iwata, N. Koyano, I. Shibuya, J. Phys. Soc. Jpn. 49, 304 (1980)

    Article  ADS  Google Scholar 

  11. A. Preisinger, K. Mereiter, W. Bronowska, Mater. Sci. Forum 166–169, 511 (1994)

    Article  Google Scholar 

  12. K.D. Kreuer, Chem. Mater. 8, 610 (1996)

    Article  Google Scholar 

  13. V.G. Ponomareva, N.F. Uvarov, G.V. Lavrova, E.F. Hairetdinov, Solid State Ionics 90, 161 (1996)

    Article  Google Scholar 

  14. V.G. Ponomareva, G.V. Lavrova, Solid State Ionics 106, 137 (1998)

    Article  Google Scholar 

  15. V.G. Ponomareva, G.V. Lavrova, L.G. Simonova, Solid State Ionics 118, 317 (1999)

    Article  Google Scholar 

  16. V.G. Ponomareva, G.V. Lavrova, Solid State Ionics 145, 197 (2001)

    Article  Google Scholar 

  17. V.G. Ponomareva, E.S. Shutova, Solid State Ionics 178, 729 (2007)

    Article  Google Scholar 

  18. C.R.I. Chisholm, S.M. Haile, Acta. Cryst. 55, 937 (1999)

    Article  Google Scholar 

  19. R. Blinc, J. Dolinsek, G. Lahajnar, I. Zupancic, L.A. Shuvalov, A.I. Baranov, Phys. Stat. Solidi 123, K83 (1984)

    Article  ADS  Google Scholar 

  20. M. Mizuno, S. Hayashi, Solid State Ionics 167, 317 (2004)

    Article  Google Scholar 

  21. S. Hayashi, M. Mizuno, Solid State Commun 132, 443 (2004)

    Google Scholar 

  22. M.G. Compton, K.C. Maynes, J. Pavelites, D.B. Baker, Solid State Commun 136, 138 (2005)

    Google Scholar 

  23. S. Hayashi, M. Mizuno, Solid State Ionics 171, 289 (2004)

    Article  Google Scholar 

  24. K. Yamada, T. Sagara, Y. Yamane, H. Ohki, T. Okuda, Solid State Ionics 175, 557 (2004)

    Article  Google Scholar 

  25. A. Ishikawa, H. Maekawa, T. Yamamura, Y. Kawakita, K. Shibata, M. Kawai, Solid State Ionics 179, 2345 (2008)

    Article  Google Scholar 

  26. K. Itoh, T. Ozaki, E. Nakamura, Acta Cryst. B 37, 1908 (1981)

    Article  Google Scholar 

  27. N.G. Bukun, A.E. Ukshe, E.A. Ukshe, Sov. Electrochem. 29, 146 (1993)

    Google Scholar 

  28. V.I. Volkov, S.A. Korotchkova, H. Ohya, Q. Guo, J. Membr. Sci. 100, 273 (1995)

    Article  Google Scholar 

  29. V.I. Volkov, A.A. Pavlov, E.A. Sanginov, Solid State Ionics 188, 124 (2011)

    Article  Google Scholar 

  30. A. V. Chernyak, Y. U. A. Dobrovolsky, in International Symposium on Systems with Fast Ionic Transport: Abstracts, Vilnius, Lithuania. p. 102 (2007)

  31. S.M. Haile, K.D. Kreuer, J. Maier, Acta Cryst. B 51, 680 (1995)

    Article  Google Scholar 

  32. S.M. Haile, W.T. Klooster, Acta Cryst. B 55, 285 (1999)

    Article  Google Scholar 

  33. H. Matsunaga, K. Itoh, E. Nakamura, J. Phys. Soc. Jpn. 48, 2011 (1980)

    Article  ADS  Google Scholar 

  34. S.M. Haile, G. Lentz, K.-D. Kreuer, J. Maier, Solid State Ionics 77, 128 (1995)

    Article  Google Scholar 

  35. S.M. Haile, P.M. Calkins, D. Boysen, Solid State Ionics 97, 145 (1997)

    Article  Google Scholar 

  36. M. Pham-Thi, Ph Colomban, A. Novak, R. Blink, Solid State Commun. 55, 265 (1985)

    Article  ADS  Google Scholar 

  37. J. Otomo, T. Tamaki, S. Nishida, S. Wang, M. Ogura, T. Kobayashi, C.-J. Wen, H. Nagamoto, H. Takahashi, J. Appl. Electrochem. 35, 865 (2005)

    Article  Google Scholar 

  38. C.R.I. Chisholm, S.M. Haile, Solid State Ionics 136–137, 229 (2000)

    Article  Google Scholar 

  39. A. Abragam, The Principles of Nuclear Magnetism (Clarendon press, Oxford, 1961), p. 614

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project no. 14-03-31665 mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Chernyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyak, A.V., Volkov, V.I. NMR Investigations of the Protonic Transport Mechanism in Composed Materials on the Basis of Cesium Acid Sulfates and Phosphates. Appl Magn Reson 45, 287–299 (2014). https://doi.org/10.1007/s00723-014-0520-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0520-z

Keywords

Navigation