Skip to main content
Log in

A Continuous-Wave Electron Paramagnetic Resonance Study of Carbon Dioxide Adsorption on the Metal–Organic Frame-Work MIL-53

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Continuous-wave electron paramagnetic resonance spectroscopy is applied to explore the adsorption of carbon dioxide (CO2) over the metal organic framework (MOF) MIL-53. Therefore, paramagnetic Cr3+ ions, which replace a small amount of the bulk Al3+ ions in MIL-53(Al/Cr), are used as magnetically active probes. CO2 was adsorbed on samples of MIL-53(Al/Cr) at equilibrium pressures between 0 and 2.5 bar. The transformation from the large pore phase to the narrow pore phase of MIL-53 was observed by electron paramagnetic resonance spectroscopy at small CO2 pressures between 0.2 and 0.4 bar, which is in accordance with adsorption results reported in literature. By analyzing the electron paramagnetic resonance signal intensities of the corresponding Cr3+ probes, the ratio between the amount of the narrow pore phase and the large pore phase before and after this phase transformation was quantified. A small fraction of the large pore phase remains even after this phase transition. CO2 adsorption at 77  K indicates the occurrence of the transformation of this MOF from a narrow pore phase to a large pore phase triggered by the adsorbed CO2. Similar observations were already made using powder X-ray diffraction or infrared spectroscopy. But in contrast to these methods electron paramagnetic resonance spectroscopy on Cr3+ seems to be very sensitive not only to large differences between crystallographic conformations like large pores and narrow pores but also to different amounts and configurations of CO2 molecules trapped in the same structural phase of MIL-53, taking advantage of the high sensitivity of the fine structure interaction of Cr3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.J. Kuppler, D.J. Timmons, Q.-R. Fang, J.-R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.-C. Zhou, Coord. Chem. Rev. 23–24, 3042 (2009). doi:10.1016/j.ccr.2009.05.019

    Article  Google Scholar 

  2. A.U. Czaja, N. Trukhan, U. Müller, Chem. Soc. Rev. 5, 1284 (2009). doi:10.1039/b804680h

    Article  Google Scholar 

  3. M. Dincă, J.R. Long, Angew. Chem. Int. Ed. 36, 6766 (2008). doi:10.1002/anie.200801163

    Article  Google Scholar 

  4. B. Panella, K. Hönes, U. Müller, N. Trukhan, M. Schubert, H. Pütter, M. Hirscher, Angew. Chem. Int. Ed. 11, 2138 (2008). doi:10.1002/anie.200704053

    Article  Google Scholar 

  5. Y. Liu, Z.U. Wang, H.-C. Zhou, Greenhouse Gas Sci Technol 4, 239 (2012). doi:10.1002/ghg.1296

    Article  Google Scholar 

  6. J.-R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Coord. Chem. Rev. 15–16, 1791 (2011). doi:10.1016/j.ccr.2011.02.012

    Article  Google Scholar 

  7. M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst, A. Wagener, Langmuir 16, 8634 (2008). doi:10.1021/la8008656

    Article  Google Scholar 

  8. S. Bourrelly, P.L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Férey, J. Am. Chem. Soc. 39, 13519 (2005). doi:10.1021/ja054668v

    Article  Google Scholar 

  9. P.L. Llewellyn, S. Bourrelly, C. Serre, Y. Filinchuk, G. Férey, Angew. Chem. Int. Ed. 46, 7751 (2006). doi:10.1002/anie.200602278

    Article  Google Scholar 

  10. C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 25, 8940 (2005). doi:10.1021/ja052431t

    Article  Google Scholar 

  11. A. Henschel, K. Gedrich, R. Kraehnert, S. Kaskel, Chem. Commun. 35, 4192 (2008). doi:10.1039/B718371B

    Article  Google Scholar 

  12. R. Srirambalaji, S. Hong, R. Natarajan, M. Yoon, R. Hota, Y. Kim, Y. Ho Ko, K. Kim, Chem. Commun. 95, 11650 (2012). doi:10.1039/c2cc36678a

    Article  Google Scholar 

  13. M. Schröder (ed.), Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis (Springer, Berlin, 2010)

    Google Scholar 

  14. M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 5, 1330 (2009). doi:10.1039/B802352M

    Article  Google Scholar 

  15. C.-Y. Sun, C. Qin, X.-L. Wang, Z.-M. Su, Expert Opin. Drug Deliv. 1, 89 (2013). doi:10.1517/17425247.2013.741583

    Article  Google Scholar 

  16. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. Int. Ed. 36, 5974 (2006). doi:10.1002/anie.200601878

    Article  Google Scholar 

  17. P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, J. Am. Chem. Soc. 21, 6774 (2008). doi:10.1021/ja710973k

    Article  Google Scholar 

  18. N.J. Hinks, A.C. McKinlay, B. Xiao, P.S. Wheatley, R.E. Morris, Microporous Mesoporous Mater. 3, 330 (2010). doi:10.1016/j.micromeso.2009.04.031

    Article  Google Scholar 

  19. C. Janiak, J.K. Vieth, New J. Chem. 11, 2366 (2010). doi:10.1039/c0nj00275e

    Article  Google Scholar 

  20. S. Chen, D. Wang, Z. Xue, X. Sun, W. Xiang, Int. J. Hydrogen Energy 8, 4887 (2011). doi:10.1016/j.ijhydene.2010.12.130

    Article  Google Scholar 

  21. P.M. Cox, R.A. Betts, C.D. Jones, S.A. Spall, I.J. Totterdell, Nature 6809, 184 (2000). doi:10.1038/35041539

    Article  ADS  Google Scholar 

  22. F. Millange, C. Serre, G. Férey, Chem. Commun. 8, 822 (2002). doi:10.1039/B201381A

    Article  Google Scholar 

  23. C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G. Férey, J. Am. Chem. Soc. 45, 13519 (2002). doi:10.1021/ja0276974

    Article  Google Scholar 

  24. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, Chem. Eur. J. 6, 1373 (2004). doi:10.1002/chem.200305413

    Article  Google Scholar 

  25. C. Serre, S. Bourrelly, A. Vimont, N.A. Ramsahye, G. Maurin, P.L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, G. Férey, Adv. Mater. 17, 2246 (2007). doi:10.1002/adma.200602645

    Article  Google Scholar 

  26. N. Ramsahye, G. Maurin, S. Bourrelly, P. Llewellyn, C. Serre, T. Loiseau, T. Devic, G. Ferey, J. Phys. Chem. C 2, 514 (2008). doi:10.1021/jp075782y

    Article  Google Scholar 

  27. N.A. Ramsahye, G. Maurin, S. Bourrelly, P.L. Llewellyn, T. Loiseau, C. Serre, G. Férey, Chem. Commun. 31, 3261 (2007). doi:10.1039/b702986a

    Article  Google Scholar 

  28. N.A. Ramsahye, G. Maurin, S. Bourrelly, P.L. Llewellyn, T. Devic, C. Serre, T. Loiseau, G. Ferey, Adsorption 5–6, 461 (2007). doi:10.1007/s10450-007-9025-5

    Article  Google Scholar 

  29. F. Salles, A. Ghoufi, G. Maurin, R.G. Bell, C. Mellot-Draznieks, G. Férey, Angew. Chem. Int. Ed. 44, 8487 (2008). doi:10.1002/anie.200803067

    Article  Google Scholar 

  30. F.-X. Coudert, M. Jeffroy, A.H. Fuchs, A. Boutin, C. Mellot-Draznieks, J. Am. Chem. Soc. 43, 14294 (2008). doi:10.1021/ja805129c

    Article  Google Scholar 

  31. A. Ghoufi, G. Maurin, J. Phys. Chem. C 14, 6496 (2010). doi:10.1021/jp911484g

    Article  Google Scholar 

  32. T.R. Whitfield, X. Wang, L. Liu, A.J. Jacobson, Solid State Sci. 9, 1096 (2005). doi:10.1016/j.solidstatesciences.2005.03.007

    Article  ADS  Google Scholar 

  33. E.V. Anokhina, M. Vougo-Zanda, X. Wang, A.J. Jacobson, J. Am. Chem. Soc. 43, 15000 (2005). doi:10.1021/ja055757a

    Article  Google Scholar 

  34. M. Vougo-Zanda, J. Huang, E. Anokhina, X. Wang, A.J. Jacobson, Inorg. Chem. 24, 11535 (2008). doi:10.1021/ic800008f

    Article  Google Scholar 

  35. Y. Liu, J.-H. Her, A. Dailly, A.J. Ramirez-Cuesta, D.A. Neumann, C.M. Brown, J. Am. Chem. Soc. 35, 11813 (2008). doi:10.1021/ja803669w

    Article  Google Scholar 

  36. D. Kolokolov, H. Jobic, A. Stepanov, M. Plazanet, M. Zbiri, J. Ollivier, V. Guillerm, T. Devic, C. Serre, G. Férey, Eur. Phys. J. Spec. Top. 1, 263 (2010). doi:10.1140/epjst/e2010-01331-y

    Article  Google Scholar 

  37. M.-A. Springuel-Huet, A. Nossov, Z. Adem, F. Guenneau, C. Volkringer, T. Loiseau, G. Férey, A. Gédéon, J. Am. Chem. Soc. 33, 11599 (2010). doi:10.1021/ja103105y

    Article  Google Scholar 

  38. M. Mendt, B. Jee, N. Stock, T. Ahnfeldt, M. Hartmann, D. Himsl, A. Pöppl, J. Phys. Chem. C 45, 19443 (2010). doi:10.1021/jp107487g

    Article  Google Scholar 

  39. T. Devic, F. Salles, S. Bourrelly, B. Moulin, G. Maurin, P. Horcajada, C. Serre, A. Vimont, J.-C. Lavalley, H. Leclerc, G. Clet, M. Daturi, P.L. Llewellyn, Y. Filinchuk, G. Férey, J. Mater. Chem. 20, 10266 (2012). doi:10.1039/c2jm15887f

    Article  Google Scholar 

  40. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

    Google Scholar 

  41. S. Stoll, A. Schweiger, J. Magn. Reson. 1, 42 (2006). doi:10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  42. R. Böttcher, E. Erdem, H.T. Langhammer, T. Müller, H.-P. Abicht, J. Phys.: Condens. Matter 17, 2763 (2005). doi:10.1088/0953-8984/17/17/026

    ADS  Google Scholar 

  43. P. Gerber, Helv. Phys. Acta 4, 655 (1972). doi:10.5169/seals-114405

    Google Scholar 

Download references

Acknowledgments

Financial support by the German Research Foundation DFG within the framework of its priority program SPP 1362 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Mendt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendt, M., Jee, B., Himsl, D. et al. A Continuous-Wave Electron Paramagnetic Resonance Study of Carbon Dioxide Adsorption on the Metal–Organic Frame-Work MIL-53. Appl Magn Reson 45, 269–285 (2014). https://doi.org/10.1007/s00723-014-0518-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0518-6

Keywords

Navigation