Skip to main content
Log in

Referenceless PRFS MR Thermometry Using Partial Separability Model

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Many areas of magnetic resonance (MR)-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution. Conventional thermometry relies on the subtraction of baseline images, which makes it sensitive to tissue motion and frequency drift during the course of treatment. For another case is the limit of magnetic resonance imaging sampling speed, it is hard to accurately achieve MR thermometry with high spatiotemporal resolution especially for dynamic organs. To address these issues, a novel method for MR thermometry is presented by exploiting the data redundancy based on partial separability (PS) model and the referenceless thermometry. The PS model highly sparse sample two datasets in the (kt) space for image reconstruction, which respectively determine the spatial and temporal resolutions. After the phase information is extracted from the images reconstructed by the PS model, the background phase outside the heated region from each acquired phase image through a polynomial fitting is estimated. Extrapolation of the polynomial to the heated region serves as the background phase estimate, which is then subtracted from the actual phase. The thermometry results showed that this method could accurately capture the dynamic change of MR thermometric images with 1.5 mm × 1.5 mm spatial resolution and 250 ms temporal resolution, respectively. The in vivo experiment of MR-guided high intensity focused ultrasound research and the cardiac dynamic MR thermometry are shown to demonstrate the benefits of the proposed method in high spatiotemporal resolution MR thermometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Ferrara, R. Pollard, M. Borden, Annu. Rev. Biomed. Eng. 9, 415–447 (2007)

    Article  Google Scholar 

  2. V. Frenkel, J. Oberoi, M.J. Stone, M. Park, C. Deng, B.J. Wood, Z. Neeman, M. Horne, K.C. Li, Radiology 239, 86–93 (2006)

    Article  Google Scholar 

  3. K. Hynynen, Ultrasonics 50, 221–229 (2010)

    Article  Google Scholar 

  4. F.A. Jolesz, K. Hynynen, Cancer J. N. Y. 8, 100–112 (2002)

    Google Scholar 

  5. N. McDannold, G. Clement, P. Black, F. Jolesz, K. Hynynen, Neurosurgery 66, 323 (2010)

    Article  Google Scholar 

  6. N. McDannold, C.M. Tempany, F.M. Fennessy, M.J. So, F.J. Rybicki, E.A. Stewart, F.A. Jolesz, K. Hynynen, Radiology 240, 263–272 (2006)

    Article  Google Scholar 

  7. N.M. Hijnen, E. Heijman, M.O. Köhler, M. Ylihautala, G.J. Ehnholm, A.W. Simonetti, H. Grüll, Int. J. Hyperth. 28, 141–155 (2012)

    Article  Google Scholar 

  8. B.E. O’Neill, C. Karmonik, E. Sassaroli, K.C. Li, J. Magn. Reson. Imaging 35, 1169–1178 (2012)

    Article  Google Scholar 

  9. V. Zderic, A. Keshavarzi, M.A. Andrew, S. Vaezy, R.W. Martin, Ultrasound Med. Biol. 30, 61–66 (2004)

    Article  Google Scholar 

  10. X. Wu, M. Sherar, Phys. Med. Biol. 47, 1603 (2002)

    Article  Google Scholar 

  11. G.T. Clement, P.J. White, R.L. King, N. McDannold, K. Hynynen, J. Ultrasound Med. 24, 1117–1125 (2005)

    Google Scholar 

  12. M.O. Köhler, C. Mougenot, B. Quesson, J. Enholm, B. Le Bail, C. Laurent, C.T. Moonen, G.J. Ehnholm, Med. Phys. 36, 3521 (2009)

    Article  Google Scholar 

  13. C. Mougenot, R. Salomir, J. Palussiere, N. Grenier, C.T. Moonen, Magn. Reson. Med. 52, 1005–1015 (2004)

    Article  Google Scholar 

  14. V. Rieke (ed.), Interventional Magnetic Resonance Imaging (Springer, Berlin Heidelberg, 2012), pp. 271–288

  15. Y. Ishihara, A. Calderon, H. Watanabe, K. Okamoto, Y. Suzuki, K. Kuroda, Y. Suzuki, Magn. Reson. Med. 34, 814–823 (2005)

    Article  Google Scholar 

  16. I. Dragonu, B.D. de Senneville, B. Quesson, C. Moonen, M. Ries, Magn. Reson. Med. 61, 994–1000 (2009)

    Article  Google Scholar 

  17. B.E. O’Neill, C. Karmonik, E. Sassaroli, K.C. Li, J. Magn. Reson. Imag. 35, 1169–1178 (2012)

    Google Scholar 

  18. V. Rieke, B. Hargreaves, K.B. Pauly, in Proceedings of the 6th Interventional MRI Symposium, 2006, pp. 1133

  19. C. Weidensteiner, N. Kerioui, B. Quesson, B.D. de Senneville, H. Trillaud, C.T. Moonen, J. Magn. Reson. Imaging. 19, 438–446 (2004)

    Article  Google Scholar 

  20. C.S. Mei, L.P. Panych, J. Yuan, N.J. McDannold, L.H. Treat, Y. Jing, B. Madore, Magn. Reson. Med. 66, 112–122 (2011)

    Article  Google Scholar 

  21. M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, IEEE Signal Proc. Mag. 25, 72–82 (2008)

    Article  ADS  Google Scholar 

  22. M. Lustig, D. Donoho, J.M. Pauly, Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  23. Z.-P. Liang, in Proceedings of the 4th IEEE International Symposium on Biomedical Imaging (ISBI), 2007, pp. 988–991

  24. J. Tsao, P. Boesiger, K.P. Pruessmann, Magn. Reson. Med. 50, 1031–1042 (2003)

    Article  Google Scholar 

  25. H. Jung, K. Sung, K.S. Nayak, E.Y. Kim, J.C. Ye, Magn. Reson. Med. 61, 103–116 (2008)

    Article  Google Scholar 

  26. M. Lustig, J.M. Santos, D.L. Donoho, J.M. Pauly, in Proceedings of the 13th Annual Meeting of ISMRM, Seattle, 2006, pp. 2420

  27. C. Shi, G. Xie, B. Qiu, X. Liu, X. Feng, in Proceedings of the 4th International Conference on Biomedical Engineering and Informatics (BMEI), 2011, pp. 528–531

  28. A.G. Christodoulou, C. Brinegar, J.P. Haldar, H. Zhang, Y.-J. Wu, L.M. Foley, T.K. Hitchens, Q. Ye, C. Ho, Z.-P. Liang, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, pp. 871–874

  29. B. Zhao, J.P. Haldar, A.G. Christodoulou, Z.-P. Liang, in Proceedings of the IEEE International Symposium on Biomedical Imaging, 2011, pp. 1593–1596

  30. Z.P. Liang, H. Jiang, C.P. Hess, P.C. Lauterbur, Int J Imag. Syst. Tech. 8, 551–557(1997)

    Article  Google Scholar 

  31. R. Salomir, B.D. de Senneville, C.T. Moonen, Concept Magn. Reson. B 19, 26–34 (2003)

    Google Scholar 

  32. S. Roujol, M. Ries, B. Quesson, C. Moonen, B. Denis de Senneville, Magn. Reson. Med. 63, 1080–1087 (2010)

    Article  Google Scholar 

  33. K.K. Vigen, B.L. Daniel, J.M. Pauly, K. Butts, Magn. Reson. Med. 50, 1003–1010 (2003)

    Article  Google Scholar 

  34. X. Pan, C. Li, K. Ying, D. Weng, W. Qin, K. Li, Magn. Reson. Imag. 28, 418–426 (2010)

    Article  Google Scholar 

  35. J. Langley, W. Potter, C. Phipps, F. Huang, Q. Zhao, Phys. Med. Biol. 56, N307 (2011)

    Article  Google Scholar 

  36. K. Kuroda, D. Kokuryo, E. Kumamoto, K. Suzuki, Y. Matsuoka, B. Keserci, Magn. Reson. Med. 56, 835–843 (2006)

    Article  Google Scholar 

  37. R.M. Goldstein, H.A. Zebker, C.L. Werner, Radio Sci. 23, 713–720 (1988)

    Article  ADS  Google Scholar 

  38. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998), pp. 1–512

    MATH  Google Scholar 

  39. I.R. Young, J.V. Hajnal, I.G. Roberts, J.X. Ling, R.J. Hill-Cottingham, A. Oatridge, J.A. Wilson, Magn. Reson. Med. 36, 366–374 (2005)

    Article  Google Scholar 

  40. R.D. Peters, R.M. Henkelman, Magn. Reson. Med. 43, 62–71 (2000)

    Article  Google Scholar 

  41. B.D. de Senneville, S. Roujol, P. Jaïs, C.T. Moonen, G. Herigault, B. Quesson, NMR Biomed. 25, 556–562 (2011)

    Article  Google Scholar 

  42. B. Zhao, J.P. Haldar, C. Brinegar, Z.-P. Liang, in Proceedings of the IEEE International Symposium on Biomedical Imaging, 2010, pp. 996–999

  43. S. Goud, Y. Hu, M. Jacob, in Proceedings of the IEEE International Symposium on Biomedical Imaging, 2010, pp. 988–991

  44. J.P. Haldar, Z.-P. Liang, in Proceedings of the IEEE International Symposium on Biomedical Imaging, 2010, pp. 716–719

  45. X. Feng, G.X. Xie, S. He, B. Kou, C. Zou, H. Zheng, X. Liu, B.S. Qiu, Magn. Reson. Imaging 30, 620–626 (2012)

    Article  Google Scholar 

  46. G.X. Xie, X. Feng, A.G. Christodoulou, D.H. Weng, X. Liu, B.S. Qiu, Magn. Reson. Imaging 31, 529–537 (2013)

    Article  Google Scholar 

  47. X. Feng, G.X. Xie, S.He, Y.C. Chung, D.Liang, X. Liu, B.S. Qiu, in Proceedings of the 4th International Conference on Biomedical Engineering and Informatics (BMEI), 2011, pp. 453–456

  48. J.D. Poorter, Magn. Reson. Med. 34, 359–367 (2005)

    Article  Google Scholar 

  49. J.D. Poorter, C.D. Wagter, Y.D. Deene, C. Thomsen, F. Ståhlberg, E. Achten, Magn. Reson. Med. 33, 74–81 (2005)

    Article  Google Scholar 

  50. J.F. Schenck, Med. Phys. 23, 815–850 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (973 Program) (nos. 2011CB707903 and 2010CB732600) and National Natural Science Foundation of China (nos. 81120108012, 81327801, and 81071147). This publication was funded by National Natural Science Foundation of China (nos. 81000611 and 81120108012) and the Natural Science. The Shenzhen Basic Research Program no.JC201105190917A. and “Hundred Talents Program” of the Chinese Academy of Sciences (no.Y144071001). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyun Shi or Guoxi Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, C., Xie, G., Song, Y. et al. Referenceless PRFS MR Thermometry Using Partial Separability Model. Appl Magn Reson 45, 93–108 (2014). https://doi.org/10.1007/s00723-013-0505-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0505-3

Keywords

Navigation