Skip to main content
Log in

Increased Posterior Cingulate Glutamate and Choline Measured by Magnetic Resonance Spectroscopy in Hypothyroidism

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Patients with hypothyroidism always suffer from neuropsychiatric symptoms such as lack of concentration, anxiety, and depression. Recent studies show that the glutamatergic system is the key part to neuropsychiatric accommodation, although the fundamental process of the dysfunction is not well understood. Therefore, our study is devoted to investigate the change of brain metabolisms by focusing on glutamate concentration in patients with hypothyroidism. Using proton magnetic resonance spectroscopy, we try to find out the possible correlation between hypothyroidism and glutamatergic system. Twenty-one untreated hypothyroidism patients and 21 age- and gender-matched controls were included in this study. Posterior cingulate cortex is the region of interest and was examined by magnetic resonance spectroscopy with a technique referred as TE-averaged PRESS at 3T field strength. The intensity of glutamate, choline, N-acetylaspartate and creatine was assessed utilizing jMRUI v4.0 software. Hypothyroid patients showed an increase of glutamate (p = 0.013) and choline (p = 0.01) in the posterior cingulate cortex compared with controls. Signal intensity of glutamate and choline increased in the region of the posterior cingulate cortex in patients with hypothyroidism. This change indicated a potential role of glutamate in the brain dysfunction in hypothyroidism, and a possible immunological mechanisms effect on Cho’s level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Bauer, D.H.S. Silverman, F. Schlagenhauf, E.D. London, C.L. Geist, K. van Herle, N. Rasgon, D. Martinez, K. Miller, A. van Herle, S.M. Berman, M.E. Phelps, P.C. Whybrow, J. Clin. Endocrinol. Metab. 94(8), 2922–2929 (2009). doi:10.1210/jc.2008-2235

    Google Scholar 

  2. M. Pilhatsch, M. Marxen, C. Winter, M.N. Smolka, M. Bauer, Thyr. Res. 4(Suppl 1), S3 (2011). doi:10.1186/1756-6614-4-S1-S3

  3. J.H. Oppenheimer, Biochimie 81, 539–543 (1999)

  4. S. Modi, M. Bhattacharya, T. Sekhri, P. Rana, R.P. Tripathi, S. Khushu, Magn. Reson. Imaging 26(3), 420–425 (2008). doi:10.1016/j.mri.2007.08.011

    Google Scholar 

  5. M. Bauer, T. Goetz, T. Glenn, P.C. Whybrow, R. Gjessing, J. Neuroendocrinol. 20, 1101–1114 (2008)

    Google Scholar 

  6. I. Hancu, J. Magn. Reson. Imaging 30(5), 1155–1162 (2009). doi:10.1002/jmri.21936

    Google Scholar 

  7. C.G. Rousseaux, J. Toxicol. Pathol. 21, 25–51 (2008)

    Google Scholar 

  8. R. Hurd, N. Sailasuta, R. Srinivasan, D.B. Vigneron, D. Pelletier, S.J. Nelson, Magn. Reson. Med. 51(3), 435–440 (2004). doi:10.1002/mrm.20007

    Google Scholar 

  9. H. Reyngoudt, T. Claeys, L. Vlerick, S. Verleden, M. Acou, K. Deblaere, Y. De Deene, K. Audenaert, I. Goethals, E. Achten, Eur. J. Radiol. 81(3), E223–E231 (2012). doi:10.1016/j.ejrad.2011.01.106

    Google Scholar 

  10. G. Salvadore, C.A.J. Zarate, Biol. Psychiatry 68(9), 780–782 (2010). doi:10.1016/j.biopsych.2010.09.011

    Google Scholar 

  11. Y. Krausz, N. Freedman, H. Lester, G. Barkai, T. Levin, M. Bocher, R. Chisin, B. Lerer, O. Bonne, Int. J. Neuropsychopharmacol. 10(1), 99–106 (2007). doi:10.1017/s1461145706006481

    Google Scholar 

  12. M. Bauer, F. Schlagenhauf, E. London, K. Miller, P.C. Whybrow, N. Rasgon, K. van Herle, A.J. van Herle, M.E. Phelps, D.H.S. Silverman, Endocr. Abstr. 11, S16 (2006)

  13. M.F. Schreckenberger, U.T. Egle, S. Drecker, H.G. Buchholz, M.M. Weber, P. Bartenstein, G.J. Kahaly, J. Clin. Endocrinol. Metab. 91, 4786–4791 (2006)

    Google Scholar 

  14. V.S. Bhatara, R.P. Tripathi, R. Sankar, A. Gupta, S. Khushu, Psychoneuroendocrinology 23, 605–612 (1998)

    Google Scholar 

  15. T.V. Elberling, E.R. Danielsen, A.K. Rasmussen, U. Feldt-Rasmussen, G. Waldemar, C. Thomsen, Neurology 60, 142–145 (2003)

  16. N. Sailasuta, T. Ernst, L. Chang, Magn. Reson. Imaging 26(5), 667–675 (2008). doi:10.1016/j.mri.2007.06.007

    Google Scholar 

  17. G.P. Bondy, Pathology 425 cerebrospinal fluid (CSF) at the Department of Pathology and Laboratory Medicine at the University of British Columbia (2011)

  18. C.O. Due, O.M. Weber, A.H. Trabesinger, D. Meier, P. Boesiger, Magn. Reson. Med. 39(3), 491–496 (1998). doi:10.1002/mrm.1910390320. (Wiley Subscription Services Inc., A Wiley Company)

  19. H. Zhang, S.D. Zhai, Y.M. Li, L.R. Chen, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 784(1), 131–135 (2003)

    Google Scholar 

  20. F. Schubert, J. Gallinat, F. Seifert, H. Rinneberg, Neuroimage 21(4), 1762–1771 (2004). doi:10.1016/j.neuroimage.2003.11.014

  21. C.B.N. Mendes-de-Aguiar, R. Alchini, H. Decker, M. Alvarez-Silva, C.I. Tasca, A.G. Trentin, J. Neurosci. Res. 86(14), 3117–3125 (2008). doi:10.1002/jnr.21755

    Google Scholar 

  22. B. HaIIengren, A. FaIorni, M. Landin-OIsson, J. Intern. Med. 23(91), 63 (1996)

    Google Scholar 

  23. S. Dagdelen, G. Hascelik, M. Bayraktar, Int. J. Clin. Pract. 63(3), 449–456 (2009). doi:10.1111/j.1742-1241.2007.01619.x

    Google Scholar 

  24. M. Ghawil, E. Tonutti, S. Abusrewil, D. Visentini, I. Hadeed, V. Miotti, P. Pecile, A. Morgham, A. Tenore, Eur. J. Pediatr. 170(8), 983–987 (2011). doi:10.1007/s00431-010-1386-1

    Google Scholar 

  25. C. Pittenger, M.H. Bloch, K. Williams, Pharmacol. Ther. 132(3), 314–332 (2011). doi:10.1016/j.pharmthera.2011.09.006

    Google Scholar 

  26. R.J. Maddock, G.A. Casazza, M.H. Buonocore, C. Tanase, Neuroimage 57(4), 1324–1330 (2011). doi:10.1016/j.neuroimage.2011.05.048

    Google Scholar 

  27. J. Bernal, J. Endocrinol. Invest. 25, 268–288 (2002)

    Google Scholar 

  28. R. Cooper-Kazaz, J.T. Apter, R. Cohen, L. Karagichev, S. Muhammed-Moussa, D. Grupper, T. Drori, M.E. Newman, H.A. Sackeim, B. Glaser, B. Lerer, Arch. Gen. Psychiatry 64, 679–688 (2007)

    Google Scholar 

  29. P.M. Yen, Physiol. Rev. 81, 1097–1142 (2001)

    Google Scholar 

  30. X. Liu, Z. Bai, F. Liu, M. Li, Q. Zhang, G. Song, J. Xu, Neuro Endocrinol. Lett. 33(6), 626–630 (2012)

    Google Scholar 

  31. P.C. Whybrow, A.J. Prange, Arch. Gen. Psychiatry 38, 106–113 (1981)

    Google Scholar 

  32. N.R. Jagannathan, N. Tandon, P. Raghunathan, N. Kochupillai,Brain Res. Dev. Brain Res. 109(2), 179–186 (1998)

    Google Scholar 

  33. A. Akinci, K. Sarac, S. Gungor, I. Mungan, O. Aydin, Am. J. Neuroradiol. 27(10), 2083–2087 (2006)

    Google Scholar 

  34. L. Nieuwenhuis, P. Santens, P. Vanwalleghem, P. Boon, Acta Neurol. Belg. 104(2), 80–83 (2004)

    Google Scholar 

  35. E.R. Danielsen, T.V. Elberling, A.K. Rasmussen, J. Dock, M. Hording, H. Perrild, G. Waldemar, U. Feldt-Rasmussen, C. Thomsen, J. Clin. Endocrinol. Metab. 93, 3192–3198 (2008)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Changyi Song from the Department of Nuclear Medicine for referral of patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilan Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Bai, Z., Liu, X. et al. Increased Posterior Cingulate Glutamate and Choline Measured by Magnetic Resonance Spectroscopy in Hypothyroidism. Appl Magn Reson 45, 83–92 (2014). https://doi.org/10.1007/s00723-013-0500-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0500-8

Keywords

Navigation