Skip to main content
Log in

Selective Hole-Burning in RIDME Experiment: Dead-Time Free Measurement of Dipolar Modulation

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The most common technique used in pulse electron paramagnetic resonance spectroscopy to determine interspin distances in the nanometer range is pulse electron double resonance, while relaxation-induced dipolar modulation enhancement (RIDME) is a promising alternative to this method. In this article we introduced a selective hole-burning technique for RIDME experiment, which allows dead-time free measurement of dipolar modulation without the use of the second microwave frequency or a magnetic field jump. This technique was tested on a short, stable biradical in a frozen solution, and the optimal experimental conditions for the measurement of dipolar modulation were found. Interspin distances in the range of 13 Å ≤ r ≤ 25 Å can be measured by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.D. Milov, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 15(1), 107–143 (1998)

    Article  Google Scholar 

  2. G. Jeschke, E. Polyhach, Phys. Chem. Chem. Phys. 9, 1895–1910 (2007)

    Article  Google Scholar 

  3. A.D. Milov, K.M. Salikhov, M.D. Shirov, Fiz. Tverd. Tela 23, 957 (1981)

    Google Scholar 

  4. A.D. Milov, A.B. Ponomarev, Y.D. Tsvetkov, Chem. Phys. Lett. 110(1), 67–72 (1984)

    Article  ADS  Google Scholar 

  5. O. Schiemann, T.F. Prisner, Quart. Rev. Biophys. 40(1), 1–53 (2007)

    Article  Google Scholar 

  6. P. Lueders, G. Jeschke, M. Yulikov, J. Phys. Chem. Lett. 2(6), 604–609 (2011)

    Article  Google Scholar 

  7. M. Yulikov, P. Lueders, M.F. Warsi, V. Chechik, G. Jeschke, Phys. Chem. Chem. Phys. 14, 10732–10746 (2012)

    Article  Google Scholar 

  8. M. Gordon-Grossman, I. Kaminker, Y. Gofman, Y. Shai, D. Goldfarb, Phys. Chem. Chem. Phys. 13, 10771–10780 (2011)

    Article  Google Scholar 

  9. M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142(2), 331–340 (2000)

    Article  ADS  Google Scholar 

  10. L.V. Kulik, Y.A. Grishin, S.A. Dzuba, I.A. Grigoryev, S.V. Klyatskaya, S.F. Vasilevsky, Y.D. Tsvetkov, J. Magn. Reson. 157(1), 61–68 (2002)

    Article  ADS  Google Scholar 

  11. A.A. Dubinskii, YuA Grishin, A.N. Savitsky, K. Mobius, Appl. Magn. Reson. 22(3), 369–386 (2002)

    Article  Google Scholar 

  12. L.V. Kulik, S.A. Dzuba, I.A. Grigoryev, Y.D. Tsvetkov, Chem. Phys. Lett. 343(3–4), 315–324 (2001)

    Article  ADS  Google Scholar 

  13. L.V. Kulik, S.V. Paschenko, S.A. Dzuba, J. Magn. Reson. 159(2), 237–241 (2002)

    Article  ADS  Google Scholar 

  14. R.B. Zaripov, V.I. Dzhabarov, A.A. Knyazev, YuG Galyametdinov, L.V. Kulik, Appl. Magn. Reson. 40(1), 11–19 (2011)

    Article  Google Scholar 

  15. S. Milikisyants, F. Scarpelli, M.G. Finiguerra, M. Ubbink, M. Huber, J. Magn. Reson. 201(1), 48–56 (2010)

    Article  ADS  Google Scholar 

  16. S.A. Dzuba, Y. Kodera, H. Hara, A. Kawamori, J. Magn. Reson. 102(2), 257–260 (1993)

    Article  Google Scholar 

  17. S.A. Dzuba, A. Kawamori, Conc. Magn. Reson. 8(1), 49–61 (1996)

    Article  Google Scholar 

  18. I.V. Borovykh, L.V. Kulik, S.A. Dzuba, A.J. Hoff, Chem. Phys. Lett. 338(2–3), 173–179 (2001)

    Article  ADS  Google Scholar 

  19. L.V. Kulik, I.V. Borovykh, P. Gast, S.A. Dzuba, J. Magn. Reson. 162(2), 423–428 (2003)

    Article  ADS  Google Scholar 

  20. A.G. Maryasov, S.A. Dzuba, K.M. Salikhov, J. Magn. Reson. 50(3), 432–450 (1982)

    Google Scholar 

  21. S.A. Dzuba, Y. Kodera, H. Hara, A. Kawamori, Chem. Phys. Lett. 214(6), 621–626 (1993)

    Article  ADS  Google Scholar 

  22. J.H. Forsberg, in Gmelin handbook of inorganic chemistry, Sc, Y, La-Lu Rare Earth Elements, vol. D3, System No. 39, (Springer-Verlag, Berlin, 1981), pp. 65–251

  23. M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142(2), 331–340 (2000)

    Article  ADS  Google Scholar 

  24. H. Jäger, A. Koch, V. Maus, H.W. Spiess, G. Jeschke, J. Magn. Reson. 194(2), 254–263 (2008)

    Article  ADS  Google Scholar 

  25. P. Luders, H. Jäger, M.A. Hemminga, G. Jeschke, M. Yulikov, J. Phys. Chem. Lett. 3(10), 1336–1340 (2012)

    Article  Google Scholar 

  26. Y. Zhou, B.E. Bowler, G.R. Eaton, S.S. Eaton, J. Magn. Reson. 139(1), 165–174 (1999)

    Article  ADS  Google Scholar 

  27. H. Sato, V. Kathirvelu, G. Spagnol, S. Rajca, A. Rajca, S.S. Eaton, G.R. Eaton, J. Phys. Chem. B 112(10), 2818–2828 (2008)

    Article  Google Scholar 

  28. S.A. Dzuba, A.M. Raitsimring, Y.D. Tsvetkov, J. Magn. Reson. 40(1), 83–89 (1980)

    Google Scholar 

  29. K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42(2), 255–276 (1981)

    Google Scholar 

  30. M. Kveder, M. Jokic, B. Rakvin, J. Chem. Phys. 134, 044531 (2011)

    Article  ADS  Google Scholar 

  31. T. Wacker, A. Schweiger, Chem. Phys. Lett. 186(1), 27–34 (1991)

    Article  ADS  Google Scholar 

  32. T. Wacker, G.A. Sierra, A. Schweiger, Isr. J. Chem. 32, 305 (1992)

    Google Scholar 

  33. A.D. Milov, B.D. Naumov, Y.D. Tsvetkov, Appl. Magn. Reson. 26(4), 587–599 (2004)

    Article  Google Scholar 

  34. A.A. Dubinskii, G.G. Maresch, H.W. Spiess, J. Chem. Phys. 100, 2437–2448 (1994)

    Article  ADS  Google Scholar 

  35. S.A. Altshuler, B.M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (in Russian) (Nauka, Moskow, 1972)

    Google Scholar 

  36. T. Sarna, J.S. Hyde, H.M. Swartz, Science 192, 1132–1134 (1976)

    Article  ADS  Google Scholar 

  37. L.V. Kulik, I.A. Grigor’ev, E.S. Salnikov, S.A. Dzuba, Y.D. Tsvetkov, J. Phys. Chem. A 107(19), 3692–3695 (2003)

    Article  Google Scholar 

  38. Y.D. Tsvetkov, S.A. Dzuba, Appl. Magn. Reson. 1(2), 179–194 (1990)

    Article  Google Scholar 

  39. L.V. Kulik, E.S. Salnikov, S.A. Dzuba, Appl. Magn. Reson. 28(1–2), 1–11 (2005)

    Article  Google Scholar 

  40. J.H. Freed, S. Saxena, J. Phys. Chem. A 101(43), 7998–8008 (1997)

    Article  Google Scholar 

  41. L.V. Kulik, S.A. Dzyuba, J. Struct. Chem. 45, 298–314 (2004)

    Article  Google Scholar 

  42. S.A. Dzuba, E.P. Kirilina, E.S. Salnikov, L.V. Kulik, J. Chem. Phys. 122, 094702 (2005)

    Article  ADS  Google Scholar 

  43. N.P. Isaev, L.V. Kulik, I.A. Kirilyuk, V.A. Reznikov, I.A. Grigor’ev, S.A. Dzuba, J. Non-Cryst. Solids 356(20–22), 1037–1042 (2010)

    Article  ADS  Google Scholar 

  44. S.A. Dzuba, E.S. Salnikov, L.V. Kulik, Appl. Magn. Reson. 30(3–4), 637–650 (2006)

    Article  Google Scholar 

  45. D. Leporini, V. Schadler, U. Wiesner, H.W. Spiess, G. Jeschke, J. Chem. Phys. 119, 11829–11846 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by the program of the Presidium of the Russian Academy of Sciences no. 23/24.48 “Nanodynamics of disordered media” and the Ministry of Education and Science of the Russian Federation number 11.519.11.1006. We are grateful to Dr. K. L. Ivanov for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kulik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konov, K.B., Knyazev, A.A., Galyametdinov, Y.G. et al. Selective Hole-Burning in RIDME Experiment: Dead-Time Free Measurement of Dipolar Modulation. Appl Magn Reson 44, 949–966 (2013). https://doi.org/10.1007/s00723-013-0464-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0464-8

Keywords

Navigation