Skip to main content
Log in

Obtaining the Optical and EPR Parameters of Vanadyl-Doped Sodium Dihydrogen Phosphate Dihydrate Powders by Experimental and Theoretical Methods

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, the spin-Hamiltonian parameters (g and A), molecular orbital coefficients, and other spectroscopic properties of vanadyl-doped sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O) powders have been investigated by experimental and theoretical methods, including electron paramagnetic resonance (EPR) and optical absorption spectroscopies. The results show axially symmetric crystalline field around VO2+ ion. The optical absorption spectra exhibit three characteristic bands of VO2+ ions in tetragonal symmetry. EPR and optical data were used in a complementary way to calculate spin-Hamiltonian parameters and molecular orbital coefficients. The octahedral and the tetragonal field parameters were theoretically calculated on the basis of crystal field theory. These parameters were used to determine various bonding parameters which characterize the nature of bonding in the complex. The theoretical results are supported by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T.F. Yen, Electron Spin Resonance of Metal Complexes (Plenum Press, New York, 1969)

    Google Scholar 

  2. A.H. Maki, B.R. McGarvey, J. Chem. Phys. 29(1), 31–34 (1958)

    Article  ADS  Google Scholar 

  3. B. Karabulut, R. Tapramaz, Z. Naturforsch. 54a, 370–374 (1999)

    Google Scholar 

  4. İ. Kartal, B. Karabulut, E. Bozkurt, Z. Naturforsch. 65a, 347–352 (2010)

    Google Scholar 

  5. R. Kripal, M. Maurya, Solid State Commun. 150, 95–100 (2010)

    Article  ADS  Google Scholar 

  6. C.J. Ballhausen, H.B. Gray, Inorg. Chem. 1, 111–122 (1961)

    Article  Google Scholar 

  7. B. Karabulut, A. Tufan, Spectrochim. Acta Part A 65, 742–748 (2006)

    Article  ADS  Google Scholar 

  8. F. Düzgün, B. Karabulut, Chem. Phys. Lett. 472, 140–142 (2009)

    Article  ADS  Google Scholar 

  9. R. Ravikumar, V.R. Reddy, A.V. Chandrasekhar, B.J. Reddy, Y.P. Reddy, P.S. Rao, J. Alloys Compd. 337, 272–276 (2002)

    Article  Google Scholar 

  10. Z. Yarbaşı, B. Karabulut, A. Karabulut, Spectrochim. Acta Part A 72, 366–368 (2009)

    Article  ADS  Google Scholar 

  11. H. Bartl, M. Catti, G. Ferraris, Acta Cryst. B 32, 987–994 (1976)

    Article  Google Scholar 

  12. M. Catti, G. Ferraris, Acta Cryst. B 32, 359–363 (1976)

    Article  Google Scholar 

  13. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clerendon Press, Oxford, 1970)

    Google Scholar 

  14. J.A. Weil, J.R. Bolton, J.E. Wertz, Electron Paramagnetic Resonance. Elementary Theory and Practical Applications (Wiley, Canada, 1993), p. 567

  15. R.P.S. Chakradhar, A. Murali, J.L. Rao, Phys. B 293, 108–117 (2000)

    Article  ADS  Google Scholar 

  16. R.C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1989)

    Google Scholar 

  17. A. Agarwal, V.P. Seth, P.S. Gahlot, S. Khasa, P. Chand, Mater. Chem. Phys. 85, 215–221 (2004)

    Article  Google Scholar 

  18. S. Khasa, V.P. Seth, A. Agarwal, R.M. Krishna, S.K. Gupta, P. Chand, Mater. Chem. Phys. 72, 366–373 (2001)

    Article  Google Scholar 

  19. P.A.A. Mary, S. Dhanuskodi, Spectrochim. Acta Part A 57, 2345–2353 (2001)

    Article  Google Scholar 

  20. F. Wang, W.-C. Zheng, L.V. He, Spectrochim. Acta Part A 71, 513–515 (2008)

    Article  ADS  Google Scholar 

  21. W.-C. Zheng, L.V. He, W. Fang, H.-G. Liu, Phys. B 403, 4171–4173 (2008)

    Article  ADS  Google Scholar 

  22. E. Kalfaoğlu, B. Karabulut, J. Magn. Magn. Mater. 324, 1593–1595 (2012)

    Article  ADS  Google Scholar 

  23. J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964)

    Google Scholar 

  24. B.R. McGarvey, J. Chem. Phys. 71, 51–67 (1967)

    Article  Google Scholar 

  25. M. Moreno, M.T. Barriuso, J.A. Aramburu, Appl. Magn. Reson. 3, 283 (1992)

    Article  Google Scholar 

  26. I. Sougandi, K. Velavan, R. Venkatesan, P.S. Rao, Phys. Stat. Sol. 241b(13), 3014–3021 (2004)

    ADS  Google Scholar 

  27. B. Karabulut, İ. İlkin, R. Tapramaz, Z. Naturforschung 60a, 95–100 (2005)

    Google Scholar 

  28. K. Velavan, I. Sougandi, R. Venkatesan, P.S. Rao, J. Phys. Chem. Solids 66, 15–20 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bünyamin Karabulut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalfaoğlu, E., Karabulut, B. Obtaining the Optical and EPR Parameters of Vanadyl-Doped Sodium Dihydrogen Phosphate Dihydrate Powders by Experimental and Theoretical Methods. Appl Magn Reson 44, 859–866 (2013). https://doi.org/10.1007/s00723-013-0457-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0457-7

Keywords

Navigation