Skip to main content
Log in

Probing the Pore Size of Porous Ceramics with Controlled Amount of Magnetic Impurities via Diffusion Effects on the CPMG Technique

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In our work, we will explore the possibility of implementing the well-known Carr–Purcell–Meiboom–Gill pulse sequence to determine the pore size of porous ceramics with magnetic impurities. The proposed approach exploits the diffusion dependence of the spin-echo signal in the presence of internal gradients occurring as a result of susceptibility contrast between the porous matrix and the confined liquid. For calibrating the technique, a comparison of the pore size data with those extracted from the so-called DDIF technique (DDIF, decay due to diffusion in the internal fields) is performed. This approach can be applied for nondestructive in situ characterization of soils, concrete, biological tissues or other structures with micrometer pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.C. Groen, L.A.A. Peffer, J. Perez-Ramirez, Microporous Mesoporous Mat. 60, 1–17 (2003)

    Article  Google Scholar 

  2. G.S. Padhy, C. Lemaire, E.S. Amirtharaj, M.A. Ioannidis, Colloids Surfaces A Physicochem Eng. Aspects 300, 222–234 (2007)

    Google Scholar 

  3. P.F. Faure, S. Rodts, Magn. Reson. Imag. 26, 1183–1196 (2008)

    Article  Google Scholar 

  4. G.R. Coates, L. Xiao, M.G. Prammer, NMR Logging: Principles And Applications (Haliburton Energy Services, Houston, 1999)

    Google Scholar 

  5. P.N. Sen, Concepts Magn. Reson. 23A, 1–21 (2004)

    Article  Google Scholar 

  6. I. Ardelean, R. Kimmich, Annu. Rep. NMR Spectrosc. 49, 43–115 (2003)

    Google Scholar 

  7. M.D. Hurlimann, J. Magn. Reson. 131, 232–240 (1998)

    Article  ADS  Google Scholar 

  8. R.M. Cotts, M.J.R. Hoch, T. Sun, T. Markert, J. Magn. Reson. 83, 252–266 (1989)

    Google Scholar 

  9. F. Humbert, M. Valtier, A. Retournard, D. Canet, J. Magn. Reson. 134, 245–254 (1998)

    Article  ADS  Google Scholar 

  10. G. Farrher, I. Ardelean, R. Kimmich, J. Magn. Reson. 188, 215–220 (2006)

    Article  ADS  Google Scholar 

  11. F. D’Orazio, J.C. Tarczon, W.P. Halperin, K. Eguchi, T. Mizusaki, J. Appl. Phys. 65, 742–751 (1989)

    Article  ADS  Google Scholar 

  12. R. Kimmich, Principles of Soft-Matter Dynamics (Springer, London, 2012)

    Book  Google Scholar 

  13. S. Godefroy, J.-P. Korb, M. Fleury, R.G. Bryant, Phys. Rev. E 64, 021605 (2001)

    Article  ADS  Google Scholar 

  14. M. Simina, R. Nechifor, I. Ardelean, Magn. Reson. Chem. 49, 314–319 (2011)

    Article  Google Scholar 

  15. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688–691 (1958)

    Article  ADS  Google Scholar 

  16. Y.Q. Song, S.G. Ryu, P.N. Sen, Nature 406, 178–181 (2000)

    Article  ADS  Google Scholar 

  17. Y.Q. Song, Concept. Magn. Reson. 18A, 97–110 (2003)

    Article  Google Scholar 

  18. D. Mintzopoulos, J.L. Ackerman, Y.Q. Song, J. Magn. Reson. Imag. 34, 361–371 (2011)

    Article  Google Scholar 

  19. N.V. Lisitza, Y.Q. Song, J. Chem. Phys. 114, 9120–9124 (2001)

    Article  ADS  Google Scholar 

  20. S. Muncaci, I. Ardelean, Appl. Magn. Reson. (2012). doi:10.1007/s00723-012-0382-1

    Google Scholar 

  21. L.J. Zielinski, M.D. Hurliman, J. Magn. Reson. 172, 161–167 (2005)

    Article  ADS  Google Scholar 

  22. L.J. Zielinski, P.N. Sen, J. Magn. Reson. 147, 95–103 (2000)

    Article  ADS  Google Scholar 

  23. L.J. Zielinski, J. Chem. Phys. 121, 352–361 (2004)

    Article  ADS  Google Scholar 

  24. A. Pohlmeier, S. Haber-Pohlmeier, S. Stapf, Vadose Zone J. 8, 735–742 (2009)

    Article  Google Scholar 

  25. J.P. Korb, New J. Phys. 13, 035016 (2011)

    Article  ADS  Google Scholar 

  26. P. Fantazzini, R.J.S. Brown, J. Magn. Reson. 177, 228–235 (2005)

    Article  ADS  Google Scholar 

  27. R.L. Kleinberg, M.A. Horsfield, J. Magn. Reson. 88, 9–19 (1990)

    Google Scholar 

  28. M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (Marcel Dekker, New York, 2003)

  29. S.W. Provencher, Comp. Phys. Comm. 27, 229–242 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS, UEFISCDI, project number PN-II-ID-PCE-2011-3-0238.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Ardelean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muncaci, S., Ardelean, I. Probing the Pore Size of Porous Ceramics with Controlled Amount of Magnetic Impurities via Diffusion Effects on the CPMG Technique. Appl Magn Reson 44, 837–848 (2013). https://doi.org/10.1007/s00723-013-0454-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0454-x

Keywords

Navigation