Skip to main content

Evaluation of Enhancement Effects as a Function of the Molarity of Gd-Based Contrast Media at 3.0 and 1.5 T: Based on the T1 Effective Pulse Sequence Parameter


The purpose of this study was to evaluate the alterations of diluted molarity of contrast media to emit the maximum signal intensity by changing the parameters of pulse sequences. The phantom was developed by diluting the magnetic resonance imaging (MRI) T1 contrast medium. The phantom images were obtained by 1.5 and 3.0 T MRI systems. We conducted Pearson’s analysis to reveal the correlation of the signal-to-noise ratio (SNR)90%, the change of the concentration range of the contrast media which shows over 90% SNR, with changing the parameters of T1 effect pulse sequences in both 1.5 and 3.0 T imaging. As the flip angle increased, the SNR increased for all contrast media in magnetization-prepared rapid gradient echo and two-dimensional fast low angle shot pulse sequences at 1.5 and 3.0 T. Although the SNR increased until 30°, the SNR was almost the same over 30° in volumetric interpolated breath-hold examination at 1.5 and 3.0 T. The minimum contrast molarity of the representing SNR90% was decreased according to the increasing time to repeat in spin echo. The present study revealed that the high concentration technique of contrast media on three pulse sequences (VIBE, MPRAGE, and 2D FLASH) could be useful to obtain images with better SNR.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    C.J. Zech, B. Vos, A. Nordell, M. Urich, L. Blomqvist, J. Breuer, M.F. Reiser, H.J. Weinmann, Invest. Radiol. 44, 305 (2009)

    Article  Google Scholar 

  2. 2.

    N. Dahlström, A. Persson, N. Albiin, Ö. Smedby, T.B. Brismar, Acta. Radiol. 48, 362 (2007)

    Article  Google Scholar 

  3. 3.

    S.M. Yu, K.R. Dong, Y.S. Ji, E.H. Goo, W.K. Chung, J.W. Lee, C.H. Choe, Appl. Magn. Reson. 40, 291 (2011)

    Article  Google Scholar 

  4. 4.

    G.W. Kabalka, E. Buonocore, K. Hubner, M. Davisa, L. Huang, Magn. Reson. Med. 8, 89 (1998)

    Article  Google Scholar 

  5. 5.

    E.L. Hänninen, T.J. Vogl, R. Felfe, W. Pegios, J. Balzer, W. Clauss, R. Felix, Radiology 216, 403 (2000)

    Google Scholar 

  6. 6.

    H. Ittrich, C. Lange, F. Tögel, A.R. Zander, H. Dahnke, C. Westenfelder, G. Adam, C. Nolte-Ernsting, J. Magn. Reson. Imag.25, 1179 (2007).

    Article  Google Scholar 

  7. 7.

    H.J. Weinmann, W. Ebert, B. Misselwitz, H. Schmitt-Willich, Eur. Radiol. 46, 33 (2003)

    Article  Google Scholar 

  8. 8.

    M. Taupitz, S. Wagner, J. Schnorr, I. Kravec, H. Pilgrimm, H. Bergmann-Fritsch, B. Hamm, Invest. Radiol. 39, 394 (2004)

    Article  Google Scholar 

  9. 9.

    K.E. Kellar, D.K. Fujii, W.H.H. Gunther, K. Briley-Sæbø, A. Bjørnerud, M. Spiller, D. Phys, S.H. Koenig, J. Magn. Reson. Imag. 11, 488 (2000).

    Article  Google Scholar 

  10. 10.

    G. Elizondo, C.J. Fnetz, D.D. Stank, S.M. Rcoklage, S.C. Quay, D. Worah, Y.M. Tsang, M.C.M. Chen, J.T. Ferrucci, Radiology 178, 73 (1991)

    Google Scholar 

  11. 11.

    M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, H.J. Weinmann, Invest. Radiol. 40, 715 (2005)

    Article  Google Scholar 

  12. 12.

    B. Bittersohl, H.S. Hosalkar, Y.J. Kim, S. Werlen, S. Trattnig, K.A. Siebenrock, T.C. Mamisch, Magn. Reson. Med. 64, 1200 (2010)

    Article  Google Scholar 

  13. 13.

    E. Altun, R.C. Semelka, B.M. Dale, J.E. Jr, J. Magn. Reson. Imag. 27, 1146 (2008)

    Article  Google Scholar 

  14. 14.

    J.P.M. Ill, J.R. Brookeman, J. Magn. Reson. Imag. 3, 761 (1993)

    Article  Google Scholar 

  15. 15.

    G. Andreisek, J.M. Froehlich, J. Hodler, D. Weishaupt, V. Beutler, C.W.A. Pfirrmann, C. Boesch, D. Nanz, Radiology 247, 706 (2008)

    Article  Google Scholar 

  16. 16.

    E. Canet, P. Douek, M. Janier, K. Bendid, J. Amaya, P. Millet, D. Revel, J. Magn. Reson. Imag. 4, 411 (1995)

    Article  Google Scholar 

  17. 17.

    K. Morita, T. Namimoto, K. Awai, M. Komi, M. Hashida, T. Tsuji, T. Hirai, Y. Yamashita, Magn. Reson. Med. 66, 213 (2011)

    Article  Google Scholar 

  18. 18.

    S.T. Cochran, K. Bomyea, J.W. Sayre, Am. J. Roentgenol. 176, 1385 (2001)

    Article  Google Scholar 

  19. 19.

    K.J. Murphy, J.A. Brunberg, R.H. Cohan, Am. J. Roentgenol. 167, 847 (1996)

    Article  Google Scholar 

  20. 20.

    J.P. Kühn, K. Hegenscheid, W. Siegmund, C. Peter Froehlich, N. Hosten, R. Puls, Am. J. Roentgenol. 193, 1318 (2009)

    Article  Google Scholar 

  21. 21.

    J.A.G. Neto, E. Altun, M. Elazzazi, G.D. Vaidean, M. Chaney, R.C. Semelka, Magn. Reson. Imag. 28, 47 (2010)

    Article  Google Scholar 

  22. 22.

    W. Li, R. Scheidegger, Y. Wu, R.R. Edelman, M. Farley, N. Krishnan, D. Burstein, P.V. Prasad, Magn. Reson. Med. 64, 1267 (2010)

    Article  Google Scholar 

  23. 23.

    U. Studler, L.M. White, G. Andreisek, S. Luu, H.L.M. Cheng, M.S. Sussman, J. Magn. Reson. Imag. 32, 394 (2010)

    Article  Google Scholar 

  24. 24.

    L.Y. Hsu, K.L. Rhoads, J.E. Holly, Peter Kellman, A.H. Aletras, A.E. Arai, J. Magn. Reson. Imag. 23, 315 (2006)

    Article  Google Scholar 

  25. 25.

    J.R. Reichenbach, T. Hackländer, T. Harth, M. Hofer, M. Rassek, U. Mödder, Eur. Radiol. 7, 264 (1997)

    Article  Google Scholar 

Download references


This study was supported by a grant (2010-0008096) from the Basic Science Research Programs through the National Research Foundation (NRF) and the program of Basic Atomic Energy Research Institute (BAERI) (2009-0078390) and a grant (2012-007883) from the Mid-career Researcher Program funded by the Ministry of Education, Science & Technology (MEST) of Korea and the Technology Innovation Program (10040427, Development of Diagnosis and Therapy Apparatus for Helium Free MRI) funded by the Ministry of Knowledge Economy (MKE, Korea).

Author information



Corresponding author

Correspondence to Bo-Young Choe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, SM., Paek, MY., Kim, SY. et al. Evaluation of Enhancement Effects as a Function of the Molarity of Gd-Based Contrast Media at 3.0 and 1.5 T: Based on the T1 Effective Pulse Sequence Parameter. Appl Magn Reson 44, 519–530 (2013).

Download citation


  • Contrast Medium
  • Pulse Sequence
  • Flip Angle
  • Maximum Signal Intensity
  • Super Paramagnetic Iron Oxide