Skip to main content
Log in

Compensation of Magnetic Field Instabilities in Field Cycling NMR by Reference Deconvolution

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Performing a nuclear magnetic resonance (NMR) experiment in an unstable magnetic field causes fluctuations in the NMR frequency, leading to a loss of reproducibility and an effective shortening of the free induction decay after data averaging. Reference deconvolution allows the compensation of field fluctuations via simultaneous measurement of an internal or external reference signal. The technique was applied to compensate the effect of field fluctuations in a resistive electromagnet used for fast field cycling NMR. An external sample was chosen as the reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In our case, the complex signal is recorded and digitized in two-channel quadrature detection and the magnitude is taken in signal post-processing.

  2. Our circuit behaves similar to a low-pass filter with a cut-off frequency of 5 kHz. This corresponds to a time-constant of 200 μs.

  3. Note that this will be incorrect when using a reference and a sample with different gyromagnetic ratios, i.e., using different spin species. See [6] for an appropriate modification of the algorithm.

References

  1. R.M. Hawk, R.R. Sharp, J.W. Tolan, Rev. Sci. Instrum. 45(1), 96 (1974). doi:10.1063/1.1686457

    Google Scholar 

  2. V. Soghomonian, M. Sabo, A. Powell, P. Murphy, R. Rosanske, T.A. Cross, H.J. Schneider-Muntau, Rev. Sci. Instrum. 71(7), 2882 (2000). doi:10.1063/1.1150707

    Google Scholar 

  3. K. Kazimierczuk, W. Koźmiński, J. Magn. Reson. 174(2), 287 (2005). doi:10.1016/j.jmr.2005.02.018

    Google Scholar 

  4. E. Sigmund, V. Mitrović, E. Calder, G. Thomas, H. Bachman, W. Halperin, P. Kuhns, A. Reyes, J. Magn. Reson. 159(2), 190 (2002) doi:10.1016/S1090-7807(02)00012-5

    Google Scholar 

  5. E.S. Meyer, I.F. Silvera, B.L. Brandt, Rev. Sci. Instrum. 60(9), 2964 (1989). doi:10.1063/1.1140636

    Google Scholar 

  6. P. van Bentum, J. Maan, J. van Os, A. Kentgens, Chem. Phys. Lett. 376(3–4), 338 (2003). doi:10.1016/S0009-2614(03)01014-5

    Google Scholar 

  7. P. Galvosas, F. Stallmach, G. Seiffert, J. Kärger, U. Kaess, G. Majer, J. Magn. Reson. 151(2), 260 (2001). doi:10.1006/jmre.2001.2381.

    Google Scholar 

  8. G.A. Morris, H. Barjat, T.J. Home, Prog. Nucl Magn Reson Spectr 31(2–3), 197 (1997). doi:10.1016/S0079-6565(97)00011-3

  9. G.A. Morris, J. Magn. Reson. (1969) 80(3), 547 (1988). doi:10.1016/0022-2364(88)90253-3

  10. M. Goez, R. Heun, J. Magn. Reson. 136(1), 69 (1999). doi:10.1006/jmre.1998.1617

  11. Z. Gan, H. Kwak, M. Bird, T. Cross, P. Gor'kov, W. Brey, K. Shetty, J. Magn. Reson. 191(1), 135 (2008). doi:10.1016/j.jmr.2007.12.008

    Google Scholar 

  12. T. Iijima, K. Takegoshi, K. Hashi, T. Fujito, T. Shimizu, J. Magn. Reson. 184(2), 258 (2007). doi:10.1016/j.jmr.2006.10.010

    Google Scholar 

  13. T. Iijima, K. Takegoshi, J. Magn. Reson. 191(1), 128 (2008). doi:10.1016/j.jmr.2007.12.009

  14. F. Noack, Prog. Nucl. Magn. Reson. Spectr. 18(3), 171 (1986). doi:10.1016/0079-6565(86)80004-8

  15. R. Kimmich, E. Anoardo, Progr. Nucl. Magn. Reson. Spectr. 44(34), 257 (2004). doi:10.1016/j.pnmrs.2004.03.002

  16. O. Lips, A. Privalov, S. Dvinskikh, F. Fujara, J. Magn. Reson. 149(1), 22 (2001). doi:10.1006/jmre.2000.2279

    Google Scholar 

  17. B. Kresse, A. Privalov, F. Fujara, Solid State Nucl. Magn. Reson. 40(4), 134 (2011). doi:10.1016/j.ssnmr.2011.10.002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Reutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reutter, S., Privalov, A. Compensation of Magnetic Field Instabilities in Field Cycling NMR by Reference Deconvolution. Appl Magn Reson 44, 55–63 (2013). https://doi.org/10.1007/s00723-012-0396-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0396-8

Keywords

Navigation