Skip to main content
Log in

EPR and Optical Absorption Study of Cu2+-Doped Diammonium Hexaaqua Magnesium Sulphate Single Crystals

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) study of Cu2+ ions doped in diammonium hexaaqua magnesium sulphate single crystal over the temperature range of 4.2–320 K is reported. Copper enters the lattice substitutionally and is trapped at two magnetically equivalent sites. The spin Hamiltonian parameters are evaluated at 320, 300, 77, and 4.2 K. The angular variations of the resonance lines in three mutually perpendicular planes ab, bc* and c*a are used to determine principal g and A values. The observed spectra are fitted to a spin Hamiltonian of rhombic symmetry with parameters of Cu2+ at 77 and 4.2 K: g xx  = 2.089, g yy  = 2.112, g zz  = 2.437 (±0.002) and A xx  = 38, A yy  = 14, A zz  = 110 (±2) × 10−4 cm−1. The ground state wave function of Cu2+ ion in this lattice is determined. The g-factor anisotropy is calculated and compared with the experimental value. The optical absorption spectra of the crystal are also recorded at room temperature. With the help of assigned bands the crystal-field parameters (Dq, Ds and Dt) are evaluated. By correlating the optical and EPR data, the nature of bonding in the complex is discussed. The temperature dependence of the g values is explained to conclude the occurrence of both static and dynamic Jahn–Teller effects over the temperature range of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Hoffmann, W. Hilczer, J. Goslar, M.M. Massa, R. Calvo, J. Magn. Reson. 153, 92–102 (2001)

    Article  ADS  Google Scholar 

  2. W. Levason, M.D. Spicer, Coord. Chem. Rev. 76, 45–120 (1987)

    Article  Google Scholar 

  3. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th edn. (Wiley, New York, 1999)

    Google Scholar 

  4. R. Kripal, S. Misra, I. Mishra, Mol. Phys. 199, 239–249 (2011)

    Article  ADS  Google Scholar 

  5. R. Kripal, S. Shukla, Phys. Scr. 83, 035702 (2011)

    Google Scholar 

  6. S.K. Hoffmann, J. Goslar, K. Tadyszak, J. Magn. Reson. 205, 293–303 (2010)

    Article  ADS  Google Scholar 

  7. B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5, 143–207 (1970)

    Article  Google Scholar 

  8. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Elsevier, Amsterdam, 2003)

    Google Scholar 

  9. K.K. Mothilal, C. Karunakaran, P. Sambasiva Rao, R. Murugesan, Spectrochim. Acta A 59, 3337–3345 (2003)

    Article  ADS  Google Scholar 

  10. J. Gouteron, S. Jeanin, Y. Jeanin, J. Livage, C. Sanchez, Inorg. Chem. 23, 3387–3393 (1984)

    Article  Google Scholar 

  11. R.C. Santana, J.F. Carvalho, S.R. Amaral, I. Vencato, E. Plegrini, M.C. Terrile, A.C. Hernandes, R. Calvo, J. Phys. Chem. Solids 63, 1857–1862 (2002)

    Article  Google Scholar 

  12. M. Velayutham, B. Varghese, S. Subramaniam, Inorg. Chem. 37, 5983–5991 (1998)

    Article  Google Scholar 

  13. D. Reinen, C. Friebel, Inorg. Chem. 23, 791–798 (1984)

    Article  Google Scholar 

  14. M.G.B. Drew, J. Nelson, S.M. Nelson, J. Chem. Soc., Dalton Trans., 1685–1690 (1981)

  15. A.K. Roy, R. Roy, Phys. Rev. B 11, 3597–3603 (1971)

    Article  ADS  Google Scholar 

  16. F.E. Mobbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Vol. 16. (Elsevier, Amsterdam, 1992)

  17. B. Bleaney, D.J.E. Ingram, Proc. Phys. Soc. A63, 408–409 (1950)

    ADS  Google Scholar 

  18. B.L. Silver, D. Getz, J. Chem. Phys. 61, 630–637, 638–650 (1974)

    Google Scholar 

  19. V.E. Petrashen, Yu.V. Yablokov, R.L. Davidovich, Phys. Stat. Sol. (b) 101, 117–125 (1980)

    Article  ADS  Google Scholar 

  20. A. Jesian, Y.H. Shing, D. Walsh, J.D.H. Donnay, J. Phys. C Solid State Phys. 9, L219–L222 (1976)

    Article  ADS  Google Scholar 

  21. A. Jesian, Y.H. Shing, D. Walsh, Phys. Rev. B16, 3012–3015 (1977)

    ADS  Google Scholar 

  22. V.E. Petrashen, Yu.V. Yablokov, R.L. Davidovich, Phys. Stat. Sol. (b) 88, 439–443 (1978)

    Article  ADS  Google Scholar 

  23. C.P. Keijzers, T. Jansen, E. de Boer, G. Van Kalkeren, J. Magn. Reson. 52, 211–220 (1983)

    Google Scholar 

  24. D.K. De, R.S. Rubins, T.D. Black, Phys. Rev. B29, 71–78 (1984)

    ADS  Google Scholar 

  25. J. Callaway, Quantum Theory of the Solid State (Academic Press, New York, 1976)

    Google Scholar 

  26. S.K. Hoffmann, J. Goslar, W. Hilczer, M.A. Augustyniak, M. Marciniak, J. Phys. Chem. A 102, 1697–1707 (1998)

    Article  Google Scholar 

  27. E.N. Maslen, S.C. Ridout, K.J. Watson, Acta. Cryst. C 44, 409–412 (1988)

    Article  Google Scholar 

  28. S. Stoll, A. Schweiger, J. Magn. Reson. 170, 42–55 (2006)

    Article  ADS  Google Scholar 

  29. D.S. Schonland, Proc. Phys. Soc. 73, 788–792 (1958)

    Article  ADS  Google Scholar 

  30. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

    Google Scholar 

  31. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 1970)

    Google Scholar 

  32. C.V. Grant, W. Cope, J.A. Ball, G.G. Maresch, B.J. Gaffney, W. Fink, R.D. Brit, J. Phys. Chem. B 103, 10627–10631 (1999)

    Article  Google Scholar 

  33. U. Muller, Inorganic Structural Chemistry, 2nd edn. (Wiley, New York, 2006)

    Book  Google Scholar 

  34. I. Sougandi, R. Venkatesan, P.S. Rao, Spectrochim Acta A 60, 2653–2660 (2004)

    Article  ADS  Google Scholar 

  35. E. Poonguzhali, R. Srinivasan, R. Venkatesan, R.V.S.S.N. Ravikumar, P.S. Rao, J. Phys. Chem. Solids 64, 1139–1146 (2003)

    Article  ADS  Google Scholar 

  36. V. Somasekharam, P.S. Prasad, K. Ramesh, Y.P. Reddy, Phys. Scr. 33, 169–172 (1986)

    Article  ADS  Google Scholar 

  37. J. Peisach, W.E. Blumberg, Arch. Biochem. Biophys. 165, 691–708 (1974)

    Article  Google Scholar 

  38. B.N. Misra, R. Kripal, Chem. Phys. 19, 17–23 (1977)

    Article  ADS  Google Scholar 

  39. B. Bleaney, K.D. Bowers, M.H.L. Pryce, Proc. R. Soc. A 228, 166–174 (1955)

    Article  ADS  Google Scholar 

  40. Z. Sroubec, K. Zdansky, J. Chem. Phys. 44, 3078–3083 (1966)

    Article  ADS  Google Scholar 

  41. B.A. Sastry, G.S. Sastry, Indian J. Pure Appl. Phys. 12, 748–750 (1974)

    Google Scholar 

  42. B. Bleaney, K.D. Bowers, D.J.E. Ingram, Proc. R. Soc. A 228, 147–157 (1955)

    Article  ADS  Google Scholar 

  43. S.K. Misra, C. Wang, Phys. Stat. Sol. (b) 154, 259–271 (1989)

    Article  ADS  Google Scholar 

  44. S.D. Desjardins, K.W. Penfield, S.L. Cohen, R.L. Musselman, E.I. Solo, J. Am. Chem. Soc. 105, 4590–4603 (1983)

    Article  Google Scholar 

  45. R. Kripal, S. Misra, J. Magn. Magn. Mater. 294, 72–82 (2005)

    Article  ADS  Google Scholar 

  46. D.E. Billing, B.J. Hathaway, P. Nicholls, J. Chem. Soc. A, 1877–1881 (1970)

  47. C.J. Ballhausen, H.B. Gray, Inorg. Chem. 1, 111–122 (1962)

    Article  Google Scholar 

  48. J. Ferguson, Prog. Inorg. Chem. 12, 159–293 (1970)

    Article  Google Scholar 

  49. A.A. Alybakov, V.A. Gubanova, K. Kudabaev, K. Sharsheev, Phys. Stat. Sol. (b) 146, K135–K139 (1988)

    Article  ADS  Google Scholar 

  50. D. Attanasio, J. Magn. Reson. 26(1), 81–91 (1977)

    Google Scholar 

  51. J.H. Vleck, Phys. Rev. 41, 208–215 (1932)

    Article  ADS  Google Scholar 

  52. A. Abragam, J. Horowitz, M.H.L. Pryce, Proc. R. Soc. A 230, 169–187 (1955)

    Article  ADS  Google Scholar 

  53. I.B. Bersuker, V.Z. Polinger, The Dynamical Jahn–Teller Effect in Localized Systems (North-Holland Publishing Co., Amsterdam, 1984)

    Google Scholar 

  54. F.S. Ham, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum Press, New York, 1972) p.1

  55. P.S. Rao, A.K. Viswanath, S. Subramanian, Spectrochim Acta A48, 1745–1757 (1992)

    ADS  Google Scholar 

  56. S.K. Misra, C. Wang, Phys. Rev. B41, 1–7 (1990)

    ADS  Google Scholar 

  57. J.A. Sussmann, J. Phys. Chem. Solids 28, 1643–1648 (1967)

    Article  ADS  Google Scholar 

  58. D.M.S. Bagguley, J. Griffiths, Proc. Phys. Soc. A 65, 594–603 (1952)

    Article  ADS  Google Scholar 

  59. M. Narayana, G.S. Sastry, J. Phys. C Solid State Phys. 12, 695–701 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Head, SAIF, IIT, Powai, Mumbai, for providing the facility of EPR spectrometer. One of the authors, Madan Gopal Misra, is grateful to the Head, Department of Physics, for providing the departmental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kripal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kripal, R., Misra, M.G. EPR and Optical Absorption Study of Cu2+-Doped Diammonium Hexaaqua Magnesium Sulphate Single Crystals. Appl Magn Reson 44, 411–434 (2013). https://doi.org/10.1007/s00723-012-0381-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0381-2

Keywords

Navigation