Skip to main content
Log in

Probing Protein Secondary Structure Using EPR: Investigating a Dynamic Region of Visual Arrestin

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

One key application of site-directed spin labeling electron paramagnetic resonance (EPR) spectroscopy is the determination of sequence-specific secondary structure in proteins. Regular secondary structure leads to a periodic variation in both side chain motion and solvent accessibility, two properties easily monitored by EPR techniques. Specifically, saturation recovery (SR) EPR spectroscopy has proven to be useful for making accessibility measurements for multiple protein structure populations by determining individual accessibilities and is, therefore, well suited to study the structure of proteins exhibiting multiple conformations in equilibrium. Here we employ both continuous wave and SR EPR spectroscopy in combination to examine the secondary structure of a short sequence showing conformational heterogeneity in visual rod arrestin. The EPR data presented here clearly distinguish between the unstructured loop and the helical structure formed in the crystallographic tetramer of visual arrestin and show that this region is unstructured in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.L. Hubbell, D.S. Cafiso, C. Altenbach, Nat. Struct. Biol. 7, 735–739 (2000)

    Article  Google Scholar 

  2. C.S. Klug, J.B. Feix, in Methods in cell biology-biophysical tools for biologists, volume one: in vitro techniques, volume 84, ed. by J.J. Correia, H.W. Detrich (Academic Press, New York, 2008), pp. 617–658

    Chapter  Google Scholar 

  3. Z.T. Farahbakhsh, C. Altenbach, W.L. Hubbell, Photochem. Photobiol. 56, 1019–1033 (1992)

    Article  Google Scholar 

  4. W.L. Hubbell, A. Gross, R. Langen, M.A. Lietzow, Curr. Opin. Struct. Biol. 8, 649–656 (1998)

    Article  Google Scholar 

  5. K.J. Oh, C. Altenbach, R.J. Collier, W.L. Hubbell, Methods Mol. Biol. 145, 147–169 (2000)

    Google Scholar 

  6. J.P. Barnes, Z. Liang, H.S. Mchaourab, J.H. Freed, W.L. Hubbell, Biophys. J. 76, 3298–3306 (1999)

    Article  Google Scholar 

  7. C. Altenbach, W. Froncisz, J.S. Hyde, W.L. Hubbell, Biophys. J. 56, 1183–1191 (1989)

    Article  Google Scholar 

  8. C.S. Klug, W. Su, J.B. Feix, Biochemistry 36, 13027–13033 (1997)

    Article  Google Scholar 

  9. M.A. Lietzow, W.L. Hubbell, Biochemistry 43, 3137–3151 (2004)

    Article  Google Scholar 

  10. W.L. Hubbell, H.S. Mchaourab, C. Altenbach, M.A. Lietzow, Structure 4, 779–783 (1996)

    Article  Google Scholar 

  11. C. Altenbach, S.L. Flitsch, H.G. Khorana, W.L. Hubbell, Biochemistry 28, 7806–7812 (1989)

    Article  Google Scholar 

  12. C. Altenbach, W. Froncisz, R. Hemker, H. McHaourab, W.L. Hubbell, Biophys. J. 89, 2103–2112 (2005)

    Article  Google Scholar 

  13. J. Pyka, J. Ilnicki, C. Altenbach, W.L. Hubbell, W. Froncisz, Biophys. J. 89, 2059–2068 (2005)

    Article  Google Scholar 

  14. Y.E. Kim, J.M. Isas, H.T. Haigler, R. Langen, J. Biol. Chem. 280, 32398–32404 (2005)

    Article  Google Scholar 

  15. J.O. Lagerstedt, M.S. Budamagunta, M.N. Oda, J.C. Voss, J. Biol. Chem. 282, 9143–9149 (2007)

    Article  Google Scholar 

  16. J.M. Isas, R. Langen, H.T. Haigler, W.L. Hubbell, Biochemistry 41, 1464–1473 (2002)

    Article  Google Scholar 

  17. J.L. Gallop, C.C. Jao, H.M. Kent, P.J. Butler, P.R. Evans, R. Langen, H.T. McMahon, EMBO J. 25, 2898–2910 (2006)

    Article  Google Scholar 

  18. J.M. Isas, R. Langen, W.L. Hubbell, H.T. Haigler, J. Biol. Chem. 279, 32492–32498 (2004)

    Article  Google Scholar 

  19. A. Cooper, Proc. Natl. Acad. Sci. USA 73, 2740–2741 (1976)

    Article  ADS  Google Scholar 

  20. Y.J. Huang, G.T. Montelione, Nature 438, 36–37 (2005)

    Article  ADS  Google Scholar 

  21. E.Z. Eisenmesser, O. Millet, W. Labeikovsky, D.M. Korzhnev, M. Wolf-Watz, D.A. Bosco, J.J. Skalicky, L.E. Kay, D. Kern, Nature 438, 117–121 (2005)

    Article  ADS  Google Scholar 

  22. L.C. James, P. Roversi, D.S. Tawfik, Science 299, 1362–1367 (2003)

    Article  Google Scholar 

  23. K. Henzler-Wildman, D. Kern, Nature 450, 964–972 (2007)

    Article  ADS  Google Scholar 

  24. M.E. Hodsdon, D.P. Cistola, Biochemistry 36, 1450–1460 (1997)

    Article  Google Scholar 

  25. J.J. Yin, J.S. Hyde, J. Magn. Reson. 74, 82–93 (1987)

    Google Scholar 

  26. P.W. Percival, J.S. Hyde, Rev. Sci. Instrum. 46, 1522–1529 (1975)

    Article  ADS  Google Scholar 

  27. M.D. Bridges, K. Hideg, W.L. Hubbell, Appl. Magn. Reson. 37, 363 (2010)

    Article  Google Scholar 

  28. J.A. Hirsch, C. Schubert, V.V. Gurevich, P.B. Sigler, Cell 97, 257–269 (1999)

    Article  Google Scholar 

  29. S.M. Hanson, D.J. Francis, S.A. Vishnivetskiy, E.A. Kolobova, W.L. Hubbell, C.S. Klug, V.V. Gurevich, Proc. Natl. Acad. Sci. USA 103, 4900–4905 (2006)

    Article  ADS  Google Scholar 

  30. V.V. Gurevich, J.L. Benovic, Methods Enzymol. 315, 422–437 (2000)

    Article  Google Scholar 

  31. M. Huisjen, J.S. Hyde, Rev. Sci. Instrum. 45, 669–675 (1974)

    Article  ADS  Google Scholar 

  32. S.M. Hanson, E.S. Dawson, D.J. Francis, E.N. Van, C.S. Klug, W.L. Hubbell, J. Meiler, V.V. Gurevich, Structure 16, 924–934 (2008)

    Article  Google Scholar 

  33. H.S. Mchaourab, M.A. Lietzow, K. Hideg, W.L. Hubbell, Biochemistry 35, 7692–7704 (1996)

    Article  Google Scholar 

  34. S.M. Hanson, N. Van Eps, D.J. Francis, C. Altenbach, S.A. Vishnivetskiy, C.S. Klug, W.L. Hubbell, V.V. Gurevich, EMBO J. 26, 1726–1736 (2007)

    Article  Google Scholar 

  35. L. Columbus, W.L. Hubbell, Biochemistry 43, 7273–7287 (2004)

    Article  Google Scholar 

  36. Z. Guo, D. Cascio, K. Hideg, W.L. Hubbell, Protein Sci. 17, 228–239 (2008)

    Article  Google Scholar 

  37. M. Kim, Q. Xu, G.E. Fanucci, D.S. Cafiso, Biophys. J. 90, 2922–2929 (2006)

    Article  ADS  Google Scholar 

  38. R.H. Flores Jimenez, M.A. Do Cao, M. Kim, D.S. Cafiso, Protein Sci. 19, 269–278 (2010)

    Article  Google Scholar 

  39. C.J. Lopez, M.R. Fleissner, Z. Guo, A.K. Kusnetzow, W.L. Hubbell, Protein Sci. 18, 1637–1652 (2009)

    Article  Google Scholar 

  40. M. Matsumura, J.A. Wozniak, D.P. Sun, B.W. Matthews, J. Biol. Chem. 264, 16059–16066 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candice S. Klug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, D.J., Hubbell, W.L. & Klug, C.S. Probing Protein Secondary Structure Using EPR: Investigating a Dynamic Region of Visual Arrestin. Appl Magn Reson 43, 405–419 (2012). https://doi.org/10.1007/s00723-012-0369-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0369-y

Keywords

Navigation