Skip to main content
Log in

An NMR Phantom Mimicking Intramyocellular (IMCL) and Extramyocellular Lipids (EMCL)

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Intramyocellular lipids (IMCL) play an important role in muscle metabolism. 1H magnetic resonance spectroscopy is the method of choice for non-invasive assessment of IMCL. However, IMCL quantitation is hampered by the larger overlapping resonances of extramyocellular lipids (EMCL). A phantom that mimics EMCL and IMCL, i.e., the 0.2-ppm resonance splitting, would be useful for testing acquisition strategies and post-processing algorithms. Here, we propose a phantom that consists of a cylindrical bottle filled with dairy cream and sunflower oil. Similar to EMCL, the oil (CH2) n protons resonate at 1.5 ppm; similar to IMCL, the spherical shape of droplets in cream results in (CH2) n protons resonating at 1.3 ppm. The relative amount of IMCL versus EMCL can be easily controlled in a systematic and exact fashion by displacing the voxel of interest across the cream–oil interface. This phantom is of simple construction and made of inexpensive and readily available materials, and should be of value in testing both acquisition and spectral analysis strategies in the context of ICML/ECML studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Krssak, K. Falk Petersen, A. Dresner, L. DiPietro, S.M. Vogel, D.L. Rothman, M. Roden, G.I.M. Shulman, Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42, 113–116 (1999)

    Article  Google Scholar 

  2. C. Boesch, J. Machann, P. Vermathen, F. Schick, Role of proton MR for the study of muscle lipid metabolism. NMR Biomed. 19, 968–988 (2006)

    Article  Google Scholar 

  3. J. Decombaz, B. Schmitt, M. Ith, B. Decarli, P. Diem, R. Kreis, H. Hoppeler, C. Boesch, Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R760–R769 (2001)

    Google Scholar 

  4. F. Brouns, G.J. van der Vusse, Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br. J. Nutr. 79, 117–128 (1998)

    Article  Google Scholar 

  5. M. van der Graaf, C.J. Tack, J.H. de Haan, D.W. Klomp, A. Heerschap, Magnetic resonance spectroscopy shows an inverse correlation between intramyocellular lipid content in human calf muscle and local glycogen synthesis rate. NMR Biomed. 23, 133–141 (2010)

    Google Scholar 

  6. L.S. Szczepaniak, E.E. Babcock, F. Schick, R.L. Dobbins, A. Garg, D.K. Burns, J.D. McGarry, D.T. Stein, Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am. J. Physiol. 276, E977–E989 (1999)

    Google Scholar 

  7. F. Schick, B. Eismann, W.I. Jung, H. Bongers, M. Bunse, O. Lutz, Comparison of localized proton NMR signals of skeletal muscle and fat tissue in vivo: two lipid compartments in muscle tissue. Magn. Reson. Med. 29, 158–167 (1993)

    Article  Google Scholar 

  8. C. Boesch, J. Slotboom, H. Hoppeler, R. Kreis, In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn. Reson. Med. 37, 484–493 (1997)

    Article  Google Scholar 

  9. S.C. Chu, Y. Xu, J.A. Balschi, C.S. Springer Jr, Bulk magnetic susceptibility shifts in NMR studies of compartmentalized samples: use of paramagnetic reagents. Magn. Reson. Med. 13, 239–262 (1990)

    Article  Google Scholar 

  10. J. Weis, L. Johansson, F. Courivaud, F.A. Karlsson, H. Ahlstrom, Quantification of intramyocellular lipids in obese subjects using spectroscopic imaging with high spatial resolution. Magn. Reson. Med. 57, 22–28 (2007)

    Article  Google Scholar 

  11. B.R. Newcomer, J.C. Lawrence, S. Buchthal, J.A. den Hollander, High-resolution chemical shift imaging for the assessment of intramuscular lipids. Magn. Reson. Med. 57, 848–858 (2007)

    Article  Google Scholar 

  12. S. Lipnick, G. Verma, S. Ramadan, J. Furuyama, M.A. Thomas, Echo planar correlated spectroscopic imaging: implementation and pilot evaluation in human calf in vivo. Magn. Reson. Med. 64, 947–956 (2010)

    Article  Google Scholar 

  13. S. Ramadan, E.M. Ratai, L.L. Wald, C.E. Mountford, In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T. J. Magn. Reson. 204, 91–98 (2010)

    Article  ADS  Google Scholar 

  14. J. Ren, A.D. Sherry, C.R. Malloy, 1H MRS of intramyocellular lipids in soleus muscle at 7 T: spectral simplification by using long echo times without water suppression. Magn. Reson. Med. 64, 662–671 (2010)

    Article  Google Scholar 

  15. M.H. Cui, J.H. Hwang, V. Tomuta, Z. Dong, D.T. Stein, Cross contamination of intramyocellular lipid signals through loss of bulk magnetic susceptibility effect differences in human muscle using (1)H-MRSI at 4 T. J. Appl. Physiol. 103, 1290–1298 (2007)

    Article  Google Scholar 

  16. L.S. Szczepaniak, R.L. Dobbins, D.T. Stein, J.D. McGarry, Bulk magnetic susceptibility effects on the assessment of intra- and extramyocellular lipids in vivo. Magn. Reson. Med. 47, 607–610 (2002)

    Article  Google Scholar 

  17. Z. Ababneh, M. Haque, S.E. Maier, R.V. Mulkern, Dairy cream as a phantom material for biexponential diffusion decay. MAGMA 17, 95–100 (2004)

    Article  Google Scholar 

  18. C. Jones, A. MacKay, B. Rutt, Bi-exponential T2 decay in dairy cream phantoms. Magn. Reson. Imaging 16, 83–85 (1998)

    Article  Google Scholar 

  19. R.V. Mulkern, Y.P. Hung, Z. Ababneh, S.E. Maier, A.B. Packard, M.C. Uluer, D.F. Kacher, G. Gambarota, S. Voss, On the strong field dependence and nonlinear response to gadolinium contrast agent of proton transverse relaxation rates in dairy cream. Magn. Reson. Imag. 23, 757–764 (2005)

    Article  Google Scholar 

  20. F. Jiru, A. Skoch, U. Klose, W. Grodd, M. Hajek, Error images for spectroscopic imaging by LCModel using Cramer–Rao bounds. MAGMA 19, 1–14 (2006)

    Article  Google Scholar 

  21. L.A. Stables, R.P. Kennan, A.W. Anderson, J.C. Gore, Density matrix simulations of the effects of J coupling in spin echo and fast spin echo imaging. J. Magn. Reson. 140, 305–314 (1999)

    Article  ADS  Google Scholar 

  22. G. Gambarota, M. van der Graaf, D. Klomp, R.V. Mulkern, A. Heerschap, Echo-time independent signal modulations using PRESS sequences: a new approach to spectral editing of strongly coupled AB spin systems. J. Magn. Reson. 177, 299–306 (2005)

    Article  ADS  Google Scholar 

  23. J. Slotboom, C. Boesch, R. Kreis, Versatile frequency domain fitting using time domain models and prior knowledge. Magn. Reson. Med. 39, 899–911 (1998)

    Article  Google Scholar 

  24. P. Vermathen, R. Kreis, C. Boesch, Distribution of intramyocellular lipids in human calf muscles as determined by MR spectroscopic imaging. Magn. Reson. Med. 51, 253–262 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Gambarota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambarota, G., Janiczek, R.L., Mulkern, R.V. et al. An NMR Phantom Mimicking Intramyocellular (IMCL) and Extramyocellular Lipids (EMCL). Appl Magn Reson 43, 451–457 (2012). https://doi.org/10.1007/s00723-012-0355-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0355-4

Keywords

Navigation