Skip to main content
Log in

Characterization of Copper-Modified ZSM-5 with Sorbed Pyridine Using Nuclear Magnetic Resonance Spectroscopy

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

An Erratum to this article was published on 10 July 2012

Abstract

Solid-state 1H, 13C and 29Si MAS NMR experiments were used to detect sorbed pyridine in hydrated copper-exchanged forms of synthetic zeolite ZSM-5, which is widely used in industry and green chemistry as well. The paper follows on from the previous study of sorption of organic pollutants by copper-modified forms of ZSM-5. Multinuclear MAS NMR experiments performed on hydrated and dehydrated copper-exchanged ZSM-5 samples with sorbed pyridine indicate that dissociation of water molecules in the vicinity of copper cations results in formation of new acid sites in the zeolite channels. Through their reaction with sorbed pyridine molecules, pyridinium ions are formed. 13C MAS NMR spectra also confirmed the presence of pyridine molecules not involved in forming pyridinium ions in the copper-modified ZSM-5 samples. From the changes in 29Si NMR spectra, some slight changes in the structure of original copper-modified ZSM-5 after pyridine sorption can be also deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Sobalík in Zeolites: from model materials to industrial catalysts, ed. by J. Čejka, J. Peréz-Pariente and W. J. Roth (Transworld Research Network, Trivandrum, Kerala, India, 2008), p. 333

  2. D.J. Richards, W.K. Shieth, Water. Res. 20, 1077–1090 (1986)

    Article  Google Scholar 

  3. C. Zhang, M. Li, G. Liu, H. Luo, R. Zhang, J. Hazard. Mater. 172, 465–471 (2009)

    Article  Google Scholar 

  4. H. Pfeifer, D. Freude, M. Hunger, Zeolites 5, 274–286 (1985)

    Article  Google Scholar 

  5. M. Hunger, D. Freude, H. Pfeifer, Catal. Today. 3, 507–512 (1988)

    Article  Google Scholar 

  6. D. Freude, Chem. Phys. Lett. 235, 69–75 (1995)

    Article  ADS  Google Scholar 

  7. K. Nishi, N. Kamiya, Y. Yokomori, Microporous. Mesoporous. Mater. 101, 83–89 (2007)

    Article  Google Scholar 

  8. F. Jin, Y. Li, Catal. Today 145, 101–107 (2009)

    Article  Google Scholar 

  9. K.H. Rhee, F.R. Brown, D.H. Finseth, J.M. Stencel, Zeolites 3, 344–347 (1983)

    Article  Google Scholar 

  10. P. Tynjälä, T.T. Pakkanen, J. Mol. Catal. A Chem. 110, 153–161 (1996)

    Article  Google Scholar 

  11. J. Connerton, R.W. Joyner, M.B. Padley, J. Chem. Soc. Faraday Trans. 91, 1841–1844 (1995)

    Article  Google Scholar 

  12. M. Reháková, K. Jesenák, S. Nagyová, R. Kubinec, S. Čuvanová, V.Š. Fajnor, J. Therm. Anal. Calorim. 76, 139–147 (2004)

    Article  Google Scholar 

  13. S. Čuvanová, M. Reháková, P. Finocchiaro, A. Pollicino, Z. Bastl, S. Nagyová, V.Š. Fajnor, Thermochim. Acta. 452, 13–19 (2007)

    Article  Google Scholar 

  14. M. Reháková, Ľ. Fortunová, Z. Bastl, S. Nagyová, S. Čuvanová, V. Jorík, E. Jóna, J. Hazard. Mater. 186, 699–706 (2011)

    Article  Google Scholar 

  15. B. Wichterlová, J. Dědeček, Z. Sobalík, A. Vondrová, K. Klier, J. Catal. 169, 194–202 (1997)

    Article  Google Scholar 

  16. K.F.M.G.J. Scholle, W.S.Veeman, J.G, Post, J.H.C. van Hooff, Zeolites. 3, 214–218 (1983)

  17. P.H. Kasai, P.M. Jones, J. Mol. Catal. 27, 81–93 (1984)

    Article  Google Scholar 

  18. M. Hunger, Solid State Nucl Magn. Reson. 6, 1–29 (1996)

    Article  Google Scholar 

  19. D. Freude, H. Ernst, I. Wolf, Solid State Nucl. Magn. Reson. 3, 271–286 (1994)

    Article  Google Scholar 

  20. M. Hunger, E. Brunner, Mol. Sieves. 4, 201–293 (2004). doi:10.1007/b94236

    Google Scholar 

  21. A.E. Hirschler, J. Catal. 2, 428 (1963)

    Article  Google Scholar 

  22. C.J. Plank, Proc. 3rd Int. Congr. Catal. Amsterdam. 1, 727 (1963)

  23. H.E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 62, 7512–7515 (1997)

    Article  Google Scholar 

  24. X. Wang, D.-S. Yang, Can. J. Chem. 87, 297–306 (2009)

    Article  Google Scholar 

  25. H.J. Rauscher, D. Michel, D. Denninger, D. Geschke, J. Mol. Catal. 9, 369–379 (1980)

    Article  Google Scholar 

  26. R. Radeglia, G. Engelhardt, Chem. Phys. Lett. 114, 28–30 (1985)

    Article  ADS  Google Scholar 

  27. G. Engelhardt, H. van Koningsveld, Zeolites 10, 650–656 (1990)

    Article  Google Scholar 

  28. C.L. Padró, E.A. Rey, L.F. González Peña, C.R. Apesteguía, Microporous. Mesoporous. Mater. 143, 236–242 (2011)

    Article  Google Scholar 

  29. T.B. Siregar, N.A.S. Amin, Jurnal. Teknologi. 44(F), 69–82 (2006)

    Google Scholar 

Download references

Acknowledgments

The “We support research activities in Slovakia” project is co-financed from EU funds. This paper was developed as part of the project named “Centre of Excellence for Integrated Research & Exploitation of Advanced Materials and Technologies in Automotive Electronics”, ITMS 26220120055. One of the authors (LF) gratefully acknowledges financial support from VEGA grant No.1/0107/8. We are also indebted to Assoc. Prof. Pavol Hudec, CSc. from the Faculty of Chemical and Food Technology at the Slovak Technical University in Bratislava for his help and collaborative efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Kovaľaková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagyová, S., Kovaľaková, M., Fričová, O. et al. Characterization of Copper-Modified ZSM-5 with Sorbed Pyridine Using Nuclear Magnetic Resonance Spectroscopy. Appl Magn Reson 43, 431–442 (2012). https://doi.org/10.1007/s00723-012-0353-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0353-6

Keywords

Navigation