Skip to main content

A Mobile DNP Polarizer for Continuous Flow Applications

Abstract

Despite its wide applicability in natural sciences, nuclear magnetic resonance (NMR) still suffers from its inherently low sensitivity. This could be overcome by hyperpolarization of molecules via dynamic nuclear polarization (DNP). Here, we introduce a substantial improvement of a mobile Overhauser DNP polarizer, based on an inexpensive Halbach magnet operating at 0.35 T. It shows an almost vanishing magnetic flux at its outer side and does not disturb other instruments. It can be placed directly next to a superconducting magnet, thus reducing the transport time of the hyperpolarized liquid. However, two problems for DNP applications remain. Firstly, radicals are needed which are often toxic. This problem becomes crucial with regard to medical applications. Secondly, the sample must be transported from the polarization magnet to the place of detection like a magnetic resonance imaging (MRI) scanner, and polarization losses due to T 1 relaxation may occur. We have implemented a flow system into the mobile DNP polarizer, which overcomes both obstacles. The radicals are immobilized in a gel matrix and the hyperpolarized radical-free fluid is subsequently directly pumped into the MRI scanner. It is shown that even at flow conditions, the NMR signal is enhanced due to Overhauser DNP in the Halbach magnet as well as in the MRI scanner (4.7 T) at a distance of 1.4 m. Acquired images demonstrate the use of enhanced and, due to dipolar coupling, inverted NMR signals, which provide an excellent MRI contrast even for small enhancements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. C.R. Bowers, D.P. Weitekamp, J. Am. Chem. Soc. 109, 5541–5542 (1987)

    Article  Google Scholar 

  2. J. Natterer, J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293–315 (1997)

    Article  Google Scholar 

  3. K. Münnemann, H.W. Spiess, Nat. Phys. 7, 522–523 (2011)

    Article  Google Scholar 

  4. S. Appelt, A.B.-A. Baranga, C.J. Erickson, M.V. Romalis, A.R. Young, W. Happer, Phys. Rev. A At. Mol. Opt. Phys. 58, 1412–1439 (1998)

    Google Scholar 

  5. T.G. Walker, W. Happer, Rev. Mod. Phys. 69, 629–642 (1997)

    Article  ADS  Google Scholar 

  6. T.R. Carver, C.P. Slichter, Phys. Rev. 102, 975–980 (1956)

    Article  ADS  Google Scholar 

  7. J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003)

    Article  ADS  Google Scholar 

  8. F.A. Gallagher, M.I. Kettunen, S.E. Day, D.-E. Hu, J.H. Ardenkjaer-Larsen, R. in’t Zandt, P.R. Jensen, M. Karlsson, K. Golman, M.H. Lerche and K.M. Brindle, Nature (London), 453, 940–943 (2008)

    Google Scholar 

  9. C. Song, K.-N. Hu, C.-G. Joo, T.M. Swager, R.G. Griffin, J. Am. Chem. Soc. 128, 11385–11390 (2006)

    Article  Google Scholar 

  10. K.H. Hausser, D. Stehlik, Adv. Magn. Reson. 3, 79–139 (1968)

    Google Scholar 

  11. K. Münnemann, C. Bauer, J. Schmiedeskamp, H. Spiess, W. Schreiber, D. Hinderberger, Appl. Magn. Reson. 34, 321–330 (2008)

    Article  Google Scholar 

  12. E.R. McCarney, B.D. Armstrong, M.D. Lingwood, S. Han, Proc. Natl. Acad. Sci. USA 104, 1754–1759 (2007)

    Article  ADS  Google Scholar 

  13. M. Reese, M. Türke, I. Tkach, G. Parigi, C. Luchinat, T. Marquardsen, A. Tavernier, F. Höfer, P. Engelke, C. Griesinger, M. Bennati, J. Am. Chem. Soc. 131, 15086–15087 (2009)

    Article  Google Scholar 

  14. A.W. Overhauser, Phys. Rev. 89, 689–700 (1953)

    Article  ADS  MATH  Google Scholar 

  15. R. Bligny, R. Douce, Curr. Opin. Plant Biol. 4, 191–196 (2001)

    Article  Google Scholar 

  16. H.C. Dorn, T. Glass, R. Gitti, K. Tsai, Chem. Phys. Lett. 155, 227–232 (1989)

    Article  ADS  Google Scholar 

  17. H.C. Dorn, T. Glass, R. Gitti, K. Tsai, Appl. Magn. Reson. 2, 9–27 (1990)

    Article  Google Scholar 

  18. S. Stevenson, T. Glass, H.C. Dorn, Anal. Chem. 70, 2623–2628 (1989)

    Article  Google Scholar 

  19. E.R. McCarney, S. Han, J. Magn. Reson. 190, 307–315 (2008)

    Google Scholar 

  20. M.D. Lingwood, T. Siaw, N. Sailasuta, B.D. Ross, P. Bhattacharya, S. Han. J. Magn. Reson. 205, 247–254 (2010)

    Article  ADS  Google Scholar 

  21. B.D. Armstrong, M.D. Lingwood, E.R. McCarney, E.R. Brown, P. Blümler, S. Han, J. Magn. Reson. 191, 273–281 (2008)

    Article  ADS  Google Scholar 

  22. H. Soltner, P. Blümler, Concepts Magn. Reson. 36A, 211–222 (2010)

    Article  Google Scholar 

  23. M.T. Türke, I. Tkach, M. Reese, P. Hofer, M. Bennati, Phys. Chem. Chem. Phys. 12, 5893–5901 (2010)

    Article  Google Scholar 

  24. J.G. Krummenacker, V.P. Denysenkov, M. Terekhov, L.M. Schreiber, T.F. Prisner, J. Magn. Reson. 215, 94–99 (2012)

    Article  ADS  Google Scholar 

  25. K. Golman, R. Zandt, M. Lerche, R. Pehrson, J.H. Ardenkjaer-Larsen, Cancer Res. 66, 10855–10860 (2006)

    Article  Google Scholar 

  26. S. Månsson, E. Johansson, P. Magnussen, C. Chai, G. Hansson, J. Pettersson, F. Ståhlberg, K. Golman, Eur. Radiol. 16, 57–67 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Münnemann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ebert, S., Amar, A., Bauer, C. et al. A Mobile DNP Polarizer for Continuous Flow Applications. Appl Magn Reson 43, 195–206 (2012). https://doi.org/10.1007/s00723-012-0344-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0344-7

Keywords