Applied Magnetic Resonance

, Volume 42, Issue 3, pp 299–311 | Cite as

Magnetic Resonance of Ferritin Crystalline Particles in Tumor Tissue

  • S. V. Yurtaeva
  • V. N. Efimov
  • N. I. Silkin
  • A. A. Rodionov
  • M. V. Burmistrov
  • A. V. Panov
  • A. A. Moroshek
Article

Abstract

Lyophilized samples of human tumor tissue exposed and not exposed to radiation therapy were investigated by magnetic resonance spectroscopy. The measurements were taken in the temperature range of 4–280 K on an X-band electron paramagnetic resonance spectrometer. Two types of ferromagnetic resonance signals were detected. The first type signals (geff ≈ 2.1 ÷ 2.4) were detected in the spectra of 25% of the samples. The orientational dependence of these signals has been found. The temperature dependences of the first type signals were measured. Specific features were observed near the temperature of 125 K. They are evidently typical for the Verwey phase transition in magnetite. We suppose that the first type signals may belong to arrays or chains of ferritin particles with the crystal core in the form of magnetite. The temperature dependences of magnetic resonance characteristics of ferritin in tumors are differ from those of the same characteristics of ferritin in healthy tissue investigated before. In spectra of irradiated tumors, the second type signals at low fields were detected which may be due to aggregates of different iron particles in cell lysosomes.

References

  1. 1.
    P.M. Harrison, P. Arosio, Biochem. Biophys. Acta 1275, 161 (1996)CrossRefGoogle Scholar
  2. 2.
    M. Uchida, M. Terashima, Ch.H. Cunningham, Y. Suzzuki, D.A. Willits, A.F. Willis, P.C. Yang, P.S. Tsao, M.V. McConnell, M.J. Young, T. Douglas, Magn. Reson. Med. 60, 1073–1081 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Uchida, M.L. Flenniken, M. Allen, D.A. Willits, B.E. Crowley, S. Brumfield, A.F. Willis, L. Jackiw, M. Jutila, M.J. Young, T. Douglas, J. Am. Chem. Soc. 128, 16626–16633 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Kwon, H. Choi, M. Chang, M.Jo, S.-J. Jung, H. Hwang, Appl. Phys. Lett. 90, 193512-1-3 (2007)Google Scholar
  5. 5.
    N. Galvez, B. Fernandez, E. Valero, P. Sanchez, R. Cuesta, J.M. Domingues-Vera, C. R. Chim. 11, 1207–1212 (2008)CrossRefGoogle Scholar
  6. 6.
    L. Durrer, T. Helbling, C. Zengei, A. Jungen, C. Stampfei, C. Heirold, Sens. Actuat. B Chem. 132(2), 485–490 (2008)CrossRefGoogle Scholar
  7. 7.
    F.M. Torti, S.V. Torti, Blood 99(10), 3505–3516 (2002)Google Scholar
  8. 8.
    K. Orino, L. Lehman, Y. Tsuji, H. Ayaki, S.V. Torti, F.M. Torti, Biochem. J. 357(1), 241 (2001)CrossRefGoogle Scholar
  9. 9.
    W.H. Massover, J.M. Cowley, Proc. Natl. Acad. Sci. USA 70(12), Part II, 3847–3851 (1973)Google Scholar
  10. 10.
    M. O’Connel, B. Halliwell, C.P. Moorhouse, O.I. Aruoma, H. Baum, T.J. Peters, Biochem. J. 234, 727–731 (1986)Google Scholar
  11. 11.
    C. Quintana, J.M. Cowley, C. Marhic, J. Struct. Biol. 147, 166–178 (2004)CrossRefGoogle Scholar
  12. 12.
    N. Galvez, B. Fernandez, P. Sanchez, R. Cuesta, M. Ceolin, M. Clemente-Leon, S. Trasobares, M. Lopes-Haro, J.J. Calvino, O. Stephan, J.M. Domingues-Vera, J. Am. Chem. Soc. 130, 8062–8068 (2008)CrossRefGoogle Scholar
  13. 13.
    F.M. Michel, L. Ehm, S.M. Antao, P.L. Lee, P.J. Chupas, G. Liu, D.R. Strongin, M.A.A. Schoonen, B.L. Phillips, J.B. Parise, Science 316(5832), 1726–1729 (2007)Google Scholar
  14. 14.
    E. Wainberg, L.J. El-Jaick, M.P. Linhares, D.M.S. Esquivel, J. Magn. Reson. 153, 69–74 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    M.P. Weir, T.J. Peters, J.F. Gibson, Biochim. Biophys. Acta 828, 298–305 (1985)CrossRefGoogle Scholar
  16. 16.
    N. Deighton, A. Abu-Raqabah, I.J. Rowland, M.C.R. Symons, T.J. Peters, R.J. Ward, J. Chem. Soc. Faraday Trans. 87, 3193–3197 (1991)CrossRefGoogle Scholar
  17. 17.
    S. Aime, B. Bergamasco, D. Beglino, G. Digilio, M. Fasano, E. Giamello, L. Lopiano, Biochim. Biophys. Acta 1361, 49–58 (1997)Google Scholar
  18. 18.
    S.L. Baader, E. Bill, A.X. Trautwein, G. Bruchelt, B.F. Matzanke, FEBS Lett. 381, 131–134 (1996)CrossRefGoogle Scholar
  19. 19.
    E. Mosiniewicz-Szablewska, A. Slawska-Waniewska, K. Świątec, N. Nedelko, J. Galazka-Friedman, A. Friedman, Appl. Magn. Reson. 24, 429–435 (2003)CrossRefGoogle Scholar
  20. 20.
    A. Slawska-Waniewska, E. Mosiniewicz-Szablewska, N. Nedelko, A. Friedman, Physika Medica 20(1), 31–33 (2005)Google Scholar
  21. 21.
    A. Slawska-Waniewska, E. Mosiniewicz-Szablewska, N. Nedelko, J. Galazka-Friedman, A. Friedman, J. Magn. Magn. Mater. 272–276, 2417–2419 (2004)CrossRefGoogle Scholar
  22. 22.
    O. Mykhailyk, G. Török, O. Dudchenko, O. Stavinska, N. Dudchenko, F. Steinberg, J. Magn. Magn. Mater. 272–276, 2422–2423 (2004)CrossRefGoogle Scholar
  23. 23.
    D. Richardson, D. Kalinowski, S. Lau, P. Jansson, D. Lovejoy, Biochim. Biophys. Acta 1790, 702–717 (2009)CrossRefGoogle Scholar
  24. 24.
    R.E. Weinstein, B.H. Bond, B.K. Silberberg, C.B. Vaughn, P. Subbaiah, D.R. Pieper, Breast Cancer Res. Treat. 14, 349–353 (1989)CrossRefGoogle Scholar
  25. 25.
    R. Yildirim, M. Gundoglu, F. Erdem, I. Kiki, M. Bilici, Eurasian J. Med. 41, 165–168 (2009)Google Scholar
  26. 26.
    S. Kukulj, M. Jaganjac, M. Boranic, S. Krizanac, Z. Santic, M. Poljak-Blazi, Med. Oncol. 27, 268–277 (2010)CrossRefGoogle Scholar
  27. 27.
    S.I. Spryleva, V.P. Tryndyak, O. Kovalchuk, A. Starlard-Davenport, V.F. Chekhun, F.A. Beland, I.P. Pogribny, Breast Cancer Res. Treat. 126, 63–71 (2011)CrossRefGoogle Scholar
  28. 28.
    Yu.L. Raikher, V.I. Stepanov, Sov. Phys.-JETP, 75(4), 764–771 (1992)Google Scholar
  29. 29.
    Yu.L. Raikher, V.I. Stepanov, Phys. Rev. B 50(9), 6250–6259 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    J. Kliava, R. Berger, in Smart Materials for Ranging Systems, ed. by J. Franse (Springer, Berlin, 2006), pp. 27–48Google Scholar
  31. 31.
    R.J. Usselman, M.T. Klem, S.E. Russek, M. Young, T. Douglas, R.B. Goldfarb, J. Appl. Phys. 107, 114703-1-4 (2010)Google Scholar
  32. 32.
    N. Noginova, F. Chen, T. Weaver, E.P. Giannelis, A.V. Bourlinos, V.A. Atsarkin, J. Phys. Condens. Matter 19, 246208 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    M.M. Noginov, N. Noginova, O. Amponsah, R. Bah, R. Rakhimov, V.A. Atsarkin, J. Magn. Magn. Mater. 320, 2228–2232 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    H. Li, M.T. Klem, K.B. Sebby, D.J. Singel, M. Young, T. Douglas, Y.U. Idzerda, J. Magn. Magn. Mater. 321, 175–180 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    R. Berger, J.-C. Bissey, J. Kliava, H. Daubric, C. Estournes, J. Magn. Magn. Mater. 234, 535–544 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    M.S. Seehra, A. Punnoose, P. Roy, A. Maniwannan, IEEE Trans. Magn. 37(4), 2207–2209 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    K. Nagata, A. Ishihara, J. Magn. Magn. Mater. 104–107, 1571–1573 (1992)CrossRefGoogle Scholar
  38. 38.
    L.R. Bickford, Phys. Rev. 78(4), 449–457 (1950)ADSCrossRefGoogle Scholar
  39. 39.
    F. Walz, J. Phys. Condens. Matter 14, R285–R340 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    A.R. Muxworthy, E. McClelland, Geophys. J. Int. 140, 101–114 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    S. Kale, S.M. Bhagat, S.E. Lofland, T. Scabarozi, S.B. Ogale, A. Orozco, S.R. Shinde, T. Venkatesan, B. Hannoyer, Phys. Rev. B 64, 205413–205421 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    H. Fischer, J. Luster, A.U. Gehring, Geophys. J. Int. 169, 909–916 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    N. Guskos, E.A. Anagnostakis, A. Guskos, J. Achiev. Mater. Manufact. Eng. 24(1), 26–35 (2007)Google Scholar
  44. 44.
    T. Bodziony, N. Guskos, J. Typek, Z. Roslaniec, U. Narkiewicz, M. Kwiatkowska, M. Maryniak, Mater. Sci.-Poland 23(4), 1055–1063 (2005)Google Scholar
  45. 45.
    N. Guskos, S. Glenis, V. Likodimos, J. Typek, M. Maryniak, Z. Roslaniec M. Kwiatkowska, M. Baran, R. Szymczak, D. Petridis, J. Appl. Phys. 99, 084307(1–7) (2006)Google Scholar
  46. 46.
    Th.C. Iancu, Ultrastruct. Pathol. 13, 573–584 (1989)CrossRefGoogle Scholar
  47. 47.
    A.M. Bataille, E. Vincent, S. Gota, M. Gautier-Souer, arXiv:cond-mat/0610291 (2006)Google Scholar
  48. 48.
    R. Prozorov, T.J. Williams, D.A. Bazylinski, Phys. Rev. B 76, 054406-1-10 (2007)Google Scholar
  49. 49.
    P. Poddar, T. Fried, G. Markowich, Phys. Rev. B 65, 172405-1-4 (2002)Google Scholar
  50. 50.
    Zh. Yuan, P. Atanassov, A.M. Alsmadi, S.G.E. te Velthuis, U. Welp, C.I. Hammetter, R. Hjelm, H. Nakotte, J. Appl. Phys. 99, 08Q509-1-3 (2006)Google Scholar
  51. 51.
    Th. C. Iancu, H. Shilon, A. Kedar, Cancer 61, 2497–2502 (1988)CrossRefGoogle Scholar
  52. 52.
    A. Kobayashi, N. Yamamoto, J. Kirschvink, J. Jpn. Soc. Powder Powder Metall. 44, 294 (1997)Google Scholar
  53. 53.
    F. Brem, A.M. Hirt, C. Simon, H.-G. Weiser, J. Dobson, J. Phys. Conf. Ser. 17, 61–64 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    F. Brem, A.M. Hirt, M. Winklhofer, K. Frei, Y. Yonekawa, H.-G. Wieser, J. Dobson, J. R. Soc. Interf. 3, 833–841 (2006)CrossRefGoogle Scholar
  55. 55.
    L.R. Bickford, J.M. Brownlow, F.R. Penoyer, Proc. IEEE 104(4), 238–244 (1957)Google Scholar
  56. 56.
    V.K. Sharma, F. Waldner, J. Appl. Phys. 48(10), 4298–4302 (1977)Google Scholar
  57. 57.
    O.N. Sorokina, A.V. Buchkova, A.L. Kovarskii, Russian J. Phys. Chem. B 3(2), 257–261 (2009)Google Scholar
  58. 58.
    H.L. Persson, T. Kurz, J.W. Eaton, U. Brunk, Biochem. J. 389, 877–884 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. V. Yurtaeva
    • 1
  • V. N. Efimov
    • 1
    • 2
  • N. I. Silkin
    • 2
  • A. A. Rodionov
    • 2
  • M. V. Burmistrov
    • 3
  • A. V. Panov
    • 3
  • A. A. Moroshek
    • 3
  1. 1.E. K. Zavoisky Physical-Technical Institute, Russian Academy of SciencesKazanRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazanRussia
  3. 3.Volga Regional Branch, N.N. Blokhin Russian Cancer Scientific Center, Russian Academy of Medical SciencesKazanRussia

Personalised recommendations