Skip to main content
Log in

Electron Spin Resonance Spectroscopy of Gamma-Irradiated Glucose Polymers

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Using electron spin resonance (ESR) spectroscopy, we revealed the irradiation-induced radicals in cellulose and starch. Before gamma-ray irradiation, no ESR signals were observed in both the glucose polymers. However, after gamma-ray irradiation, a singlet at g = 2.0 was observed, and a pair of side signals appeared simultaneously. The side signals were found at the symmetric field positions at both sides of the singlet signal. The side signals were visible in cellulose but not in starch. The side signals are found to be a precise indicator for irradiation effects in cellulose. They are originated from neither the peroxide radical of glucose polymer nor the so-called cellulosic radicals. By the simulation method, we found that the side signals are originated from a triplet due to a hyperfine interaction with two protons. By the theoretical simulation, we revealed that the signal undergo the rotational motions rather than rigid limit state (or no motion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Ukai, H. Nakamura, Y. Shimoyama, Spectrochim. Acta 63(4), 879–882 (2006)

    Article  Google Scholar 

  2. M. Ukai, Y. Shimoyama, J. Food Sci. 68(7), 2225–2229 (2003)

    Article  Google Scholar 

  3. M. Ukai, Y. Shimoyama, Appl. Magn. Reson. 24, 1–11 (2003)

    Article  Google Scholar 

  4. H. Nakamura, M. Ukai, Y. Shimoyama, Spectrochim. Acta 63(4), 883–887 (2006)

    Article  Google Scholar 

  5. Y. Shimoyama, H. Nakamura, M. Ukai, Spectrochim. Acta 63(4), 888–890 (2006)

    Article  Google Scholar 

  6. M. Ukai, Y. Shimoyama, Appl. Magn. Reson. 29, 315–324 (2005)

    Article  Google Scholar 

  7. J. Raffi, P. Stocker, Appl. Magn. Reson. 10, 357–373 (1996)

    Article  Google Scholar 

  8. J. Raffi, J.P. Agnel, Radiat. Phys. Chem. 34, 891–894 (1989)

    Google Scholar 

  9. J. Raffi, N.D. Yordanov, S. Chabane, L. Douifi, V. Gancheva, Spectrochim. Acta 63(4), 409–416 (2000)

    Google Scholar 

  10. D. Loftroth, A. Ehrenberg, L. Ehrenberg, Radiat. Bot. 4, 455–467 (1964)

    Google Scholar 

  11. A. Ehrenberg, L. Ehrenberg, G. Löfroth, Abhandl. Deut. Akad. Wiss. Berlin, Kl. Med. 1, 229–231 (1962)

    Google Scholar 

  12. J. Lee, T. Kausar, H.W. Chung, I.Y. Jeong, I.A. Bhatti, J.H. Kwon, Food Sci. Biotechnol. 18(2), 374–378 (2009)

    Google Scholar 

  13. J. Lee, T. Kausar, B.K. Kim, J.H. Kwon, J. Agric. Food Chem. 56(16), 7184–7188 (2008)

    Article  Google Scholar 

  14. N.D. Yordanov, O. Lagunov, K. Dimov, Radiat. Phys. Chem. 78(4), 277–280 (2009)

    Article  ADS  Google Scholar 

  15. J. Raffi, N.D. Yordanov, S. Chabane, L. Douifi, V. Gancheva, S. Ivanova, Spectrochim. Acta 56, 409–416 (2009)

    Google Scholar 

  16. R. Yamaoki, T. Tsujino, S. Kimura, Y. Mino, M. Ohta, J. Nat. Med. 63(1), 28–31 (2009)

    Article  Google Scholar 

  17. B. Sanyal, M.G. Sajilata, S. Chatterjee, R.S. Singhal, P.S. Variyar, M.Y. Kamat, A. Sharma, J. Agric. Food Chem. 56(19), 8987–8991 (2008)

    Article  Google Scholar 

  18. M. Cutrubinis, D. Chirita, D. Savu, C.E. Secu, R. Mihai, M. Secu, C. Ponta, Radiat. Phys. Chem. 76(8–9), 1450–1454 (2007)

    Article  ADS  Google Scholar 

  19. M. Polovka, V. Brezova, P. Simko, J. Food, Nutr. Res. 46(2), 75–83 (2007)

    Google Scholar 

  20. D. Jo, J.H. Kwon, Food Control 17(8), 617–621 (2006)

    Article  Google Scholar 

  21. B. Butz, A. Hildebrand, Deutsche Lebensmittel-Rundschau 102(4), 154–157 (2006)

    Google Scholar 

  22. Japanese Industrial Standards Committee, Filter paper (for chemical analysis), JIS P-3801, p. 6 (1995)

  23. Kokko-Oblate Co., Ltd. http://www.kokkooblate.co.jp/index.html. Accessed 3 Jan 2011

  24. H.M. Swartz, J.R. Bolton, D.C. Borg, Biological Applications of Electron Spin Resonance (Wiley, New York, 1972), pp. 23–29

    Google Scholar 

  25. E. Sagstuen, A. Lund, J. Maruani, J. Phys. Chem. 104, 6362–6371 (2000)

    Google Scholar 

  26. K.Å. Thuomas, A. Lund, J. Magn. Reson. 22, 315–325 (1976)

    Google Scholar 

  27. B. Rånby, ESR Spectroscopy in Polymer Research (Springer, Berlin, 1977), pp. 235–240

    Google Scholar 

  28. J.C. Arthur Jr., High Polym. 5, 977 (1971)

    Google Scholar 

  29. J.C. Arthur Jr., O. Hinojosa, J. Polym. Sci. 36, 53 (1971)

    Google Scholar 

  30. J.C. Arthur, J.T. Mares, O. Hinojosa, Text Res. J. 36, 630 (1966)

    Article  Google Scholar 

  31. P.J. Baugh, O. Hinojosa, J.C. Arthur, J. Appl. Polym. Sci. 11, 1139 (1967)

    Article  Google Scholar 

  32. K. Adamic, Starke 20, 3 (1968)

    Article  Google Scholar 

Download references

Acknowledgments

A part of this study is the result of “Studies on Irradiated Food in Japan” carried out under the Strategic Promotion Program for Basic Nuclear Research by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Kameya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameya, H., Nakamura, H., Ukai, M. et al. Electron Spin Resonance Spectroscopy of Gamma-Irradiated Glucose Polymers. Appl Magn Reson 40, 395–404 (2011). https://doi.org/10.1007/s00723-011-0221-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0221-9

Keywords

Navigation