Skip to main content

Advertisement

Log in

Sample-Induced Resistance Estimation in Magnetic Resonance Experiments: Simulation and Comparison of Two Methods

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Signal-to-noise ratio estimation in magnetic resonance experiments requires the knowledge of sample-induced resistance value, where the sample can be protein solutes, cell suspensions, plants, animals, portions of human body or saline solution phantoms. Many authors studied sample–coil interaction using homogeneous infinitely long cylinders, spheres or half-space as approximations of the sample geometry. However, in real magnetic resonance experiments, both sample shape and dimensions can be very different with respect to these models. This paper describes and compares two different methods developed by the authors for sample-induced resistance estimation, both useful for predicting the performance of radio-frequency coils strictly coupled to the sample, where the knowledge of a samplecoil interaction model permits to estimate the different noise contributors. The main goal of our research is testing the proposed algorithms and finding their limitations by comparing their performances for a simple case which uses a sample simplified geometry. The first method, based on the magnetostatic approach, employs vector potential calculation and can be easily implemented for simple coils and sample geometries. The second method uses finite-difference time-domain algorithm and permits to simulate systems with various geometries, without approximations in sample and coil geometries. Comparison with experimental data, performed on three homebuilt surface coils each of them successively tuned at three different frequencies, demonstrated the differences in accuracy of the developed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.I. Hoult, R.E. Richards, J. Magn. Reson. 24, 71–85 (1976)

    Google Scholar 

  2. S. Crozier, I.M. Brereton, F.O. Zelaya, W.U. Roffmann, D.M. Doddrell, J. Magn. Reson. 126, 39–47 (1997)

    Google Scholar 

  3. T.K.F. Foo, C.E. Hayes, Y.W. Kang, Magn. Res. Med. 21(2), 165–177 (1991)

    Google Scholar 

  4. D.I. Hoult, P.C. Lauterbur, J. Magn. Reson. 34, 415–433 (1979)

    Google Scholar 

  5. W.A. Edelstein, T.H. Foster, J.F. Schenck, in Proceeding of the 4th Annual Meeting of the Society of Magnetic Resonance, London, 19–23 August 1985, Book of Abstracts, pp. 964–965

  6. W. Schnell, W. Renz, M. Vester, H. Ermert, IEEE Trans. Antenna Propag. 48(3), 418–428 (2000)

    Google Scholar 

  7. T.L. Peck, R.L. Magin, P.C. Lauterbur, J. Magn. Reson. B 108, 114–124 (1995)

    Google Scholar 

  8. H. Vesselle, R.E. Collin, IEEE Trans. Biomed. Eng. 42, 507–520 (1995)

    Google Scholar 

  9. T. Prock, D.J. Collins, M.O. Leach, Phys. Med. Biol. 46, 1753–1765 (2001)

    Google Scholar 

  10. T.S. Ibrahim, C. Mitchell, P. Schmalbrock, R. Lee, D.W. Chakeres, Magn. Res. Med. 54, 683–690 (2005)

    Google Scholar 

  11. K.S. Yee, IEEE Trans. Antenna Propag. AP-14, 302–307 (1966)

    Google Scholar 

  12. Y. Han, S.M. Wright, in Proceedings of the 12th Annual Meeting of SMRM, New York, 1993, p. 1237

  13. J. Chen, Z. Feng, J.M. Jin, IEEE Trans. Biomed. Eng. 45(5), 650–659 (1998)

    Google Scholar 

  14. A. Amjad, R. Kamondetdacha, A.V. Kildishev, S.M. Park, IEEE Magn. 41(10), 4185–4187 (2005)

    Google Scholar 

  15. Z. Wang, J.C. Lin, W. Mao, W. Liu, M.B. Smith, C.M. Collins, J. Magn. Reson. 26, 437–441 (2007)

    Google Scholar 

  16. V. Hartwig, G. Giovannetti, N. Vanello, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 38, 337–348 (2010)

    Google Scholar 

  17. J. Wang, A. Reykowski, J. Dickas, IEEE Trans. Biomed. Eng. 42(9), 908–917 (1995)

    Google Scholar 

  18. M.D. Harpen, Med. Phys. 14(4), 616–618 (1987)

    Google Scholar 

  19. K. Ocegueda, A.O. Rodriguez, Conc. Magn. Reson. Part A 28(6), 422–429 (2006)

  20. B.H. Suits, A.N. Garroway, J.B. Miller, J. Magn. Reson. 135, 373–379 (1998)

    Google Scholar 

  21. J. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging (CRC, Boca Raton, 1999)

    Google Scholar 

  22. GEMS (2007) Computer and communication unlimited, PA, USA. http://www.2comu.com

  23. G. Giovannetti, V. Viti, V. Positano, M.F. Santarelli, L. Landini, A. Benassi, Conc. Magn. Res. Part B: Magn. Reson. Eng. 31B(3), 140–146 (2007)

    Google Scholar 

  24. G. Giovannetti, V. Viti, Y. Liu, W. Yu, R. Mittra, L. Landini, A. Benassi, Conc. Magn. Res. Part B: Magn. Reson. Eng. 33B(4), 209–215 (2008)

    Google Scholar 

  25. G. Giovannetti, F. Frijia, L. Menichetti, M. Milanesi, J.H. Ardenkjaer-Larsen, D. De Marchi, V. Hartwig, V. Positano, L. Landini, L. Lombardi, M.F. Santarelli, Med. Phys. 37(10), 5361–5369 (2010)

    Google Scholar 

  26. A. Liffers, H.H. Quick, C.U. Herborn, H. Ermert, M.E. Ladd, Magn. Res. Med. 50, 439–443 (2003)

    Google Scholar 

  27. J.F. Schenck, H.R. Hart Jr, T.H. Foster, W.A. Edelstein, P.A. Bottomley, R.W. Redington, C.J. Hardy, R.A. Zimmerman, L.T. Bilaniuk, Am. J. Roentgenol. 144(5), 1033–1036 (1985)

    Google Scholar 

  28. H.C. Taylor, M. Burl, J.W. Hand, Phys. Med. Biol. 42, 1395–1402 (1997)

    Google Scholar 

  29. American Society for Testing and Material (ASTM) Designation: F2182-02a (2004)

  30. L. Darrasse, G. Kassab, Rev. Sci. Instrum. 64, 1841–1844 (1993)

    Google Scholar 

  31. G. Giovannetti, V. Hartwig, L. Landini, M.F. Santarelli, Appl. Magn. Reson. 39, 391–399 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Giovannetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovannetti, G., Hartwig, V., Landini, L. et al. Sample-Induced Resistance Estimation in Magnetic Resonance Experiments: Simulation and Comparison of Two Methods. Appl Magn Reson 40, 351–361 (2011). https://doi.org/10.1007/s00723-011-0210-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0210-z

Keywords

Navigation