Applied Magnetic Resonance

, Volume 40, Issue 2, pp 213–220 | Cite as

EPR Monitoring of BaTiO3 Formation

  • D.-Y. Lu
  • T. Ogata
  • H. Unuma
  • X.-B. Li
  • T. Kawai
  • X.-Y. Sun
Article

Abstract

BaCO3 and anatase-type TiO2 were adopted as initial materials to prepare BaTiO3 powder by the solid-state reaction method at a heating rate of 350°C/h. The electron paramagnetic resonance (EPR) technique was employed to monitor the formation of BaTiO3. TiO2 showed a series of complicated EPR signals associated primarily with Fe impurities. The formation of BaTiO3 can be monitored in terms of the evolution of EPR signals associated with Fe impurities with calcination and measurement temperatures. The activation of the g = 2.004 signal above the Curie point of BaTiO3 and the disappearance of the other EPR signals in the BaCO3/TiO2 mixture at room temperature are characteristic of the formation of BaTiO3.

References

  1. 1.
    R.N. Schwartz, B.A. Wechsler, R.A. McFarlane, Phys. Rev. B 46, 3263–3272 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    T. Miki, A. Fujimoto, S. Jida, J. Appl. Phys. 83, 1592–1603 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7, 25–34 (2004)CrossRefGoogle Scholar
  4. 4.
    F. Spadavecchia, G. Cappelletti, S. Ardizzone, C.L. Bianchi, S. Cappelli, C. Oliva, P. Scardi, M. Leoni, P. Fermo, Appl. Catal. B Environ. 96, 314–322 (2010)CrossRefGoogle Scholar
  5. 5.
    T.K. Ghorai, S. Pramanik, P. Pramanik, Appl. Surf. Sci. 255, 9026–9031 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    K. Komaguchi, H. Nakano, A. Araki, Y. Harima, Chem. Phys. Lett. 428, 338–342 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    A. Amorelli, J.C. Evans, C.C. Rowlands, J. Chem. Soc. Faraday Trans. 183, 3541–3548 (1987)Google Scholar
  8. 8.
    V. Brezova, Z. Vreckova, P. Billik, M. Caplovicova, G. Plesch, J. Photochem. Photobiol. A: Chem. 206, 177–187 (2009)CrossRefGoogle Scholar
  9. 9.
    H.Y. Hao, J.L. Zhang, Micropor. Mesopor. Mater. 121, 52–57 (2009)CrossRefGoogle Scholar
  10. 10.
    C. Fabrega, T. Andreu, A. Cabot, J.R. Morante, J. Photochem. Photobiol. A: Chem. 211, 170–175 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Wu, J. Zhang, L. Xiao, F. Chen, Appl. Surf. Sci. 256, 4260–4268 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    D.C. Hurum, A.G. Agrios, S.E. Crist, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Electron Spectrosc. Relat. Phenom. 150, 155–163 (2006)CrossRefGoogle Scholar
  13. 13.
    Q. Li, X. Wang, Z. Jin, D. Yang, S. Zhang, X. Guo, J. Yang, Z. Zhang, J. Nanopart. Res. 9, 951–957 (2007)CrossRefGoogle Scholar
  14. 14.
    J.M. Cho, W.J. Yun, J.K. Lee, H.S. Lee, W.W. So, S.J. Moon, Y. Jia, H. Kulkarni, Y. Wu, Appl. Phys. A 88, 751–755 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    L.H. Wei, S.Y. Wu, Z.H. Zhang, X.F. Wang, Y.X. Hu, Pramana J. Phys. 71, 167–173 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    J. Sa, M. Fernandez-Garcia, J.A. Anderson, Catal. Commun. 9, 1991–1995 (2008)CrossRefGoogle Scholar
  17. 17.
    P. Castillo-Villalon, J. Ramirez, J. Catal. 268, 39–48 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Teleki, S.E. Pratsinis, Phys. Chem. Chem. Phys. 11, 3742–3747 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Chiesa, M.C. Paganini, E. Giamello, Appl. Magn. Reson. 37, 605–618 (2010)CrossRefGoogle Scholar
  20. 20.
    R. Scotti, M. D’Arienzo, A. Testino, F. Morazzoni, Appl. Catal. B Environ. 88, 497–504 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Green, E. Carter, D.M. Murphy, Res. Chem. Intermed. 35, 162114 (2009)CrossRefGoogle Scholar
  22. 22.
    C.-P. Kumar, N.-O. Gopal, T.-C. Wang, M.-S. Wong, S.-C. Ke, J. Phys. Chem. 110, 5223–5229 (2006)CrossRefGoogle Scholar
  23. 23.
    F.D. Brandao, M.V.B. Pinheiro, G.M. Ribeiro, G. Medeiros-Ribeiro, K. Krambrock, Phys. Rev. B 80, 235204 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    S. Yang, L.E. Halliburton, A. Manivannan, P.H. Bunton, D.B. Baker, M. Klemm, S. Horn, A. Fujishima, Appl. Phys. Lett. 94, 162114 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    T. Sakudo, H. Unoki, S. Maekawa, J. Phys. Soc. Jpn. 18, 913 (1963)ADSCrossRefGoogle Scholar
  26. 26.
    T.R.N. Kutty, P. Murugaraj, N.S. Gajbhiye, Mater. Lett. 2, 396–400 (1984)CrossRefGoogle Scholar
  27. 27.
    T. Kolodiazhnyi, A. Petric, J. Phys. Chem. Solids 64, 953–960 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    T.D. Dunber, W.L. Warren, B.A. Tuttle, C.A. Randall, T. Tsur, J. Phys. Chem. B 108, 908–917 (2004)CrossRefGoogle Scholar
  29. 29.
    D.-Y. Lu, X.-Y. Sun, M. Toda, Jpn. J. Appl. Phys. 45, 8782–8788 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    D.-Y. Lu, M. Toda, T. Ogata, X.-Y. Sun, Jpn. J. Appl. Phys. 48, 021401 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D.-Y. Lu
    • 1
  • T. Ogata
    • 2
  • H. Unuma
    • 2
  • X.-B. Li
    • 1
  • T. Kawai
    • 2
  • X.-Y. Sun
    • 1
  1. 1.Research Center for Materials Science and EngineeringJilin Institute of Chemical TechnologyJilinPeople’s Republic of China
  2. 2.Graduate School of Science and TechnologyYamagata UniversityYonezawaJapan

Personalised recommendations