Skip to main content
Log in

Stimulated Electron Spin Polarization in Strongly Coupled Triplet–Doublet Spin Pairs

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The possibility of stimulating electron spin polarization in a system consisting of a stable paramagnetic center and a chromophore that can be excited into its triplet state is discussed. In such systems, the doublet state of the paramagnetic center couples to the excited triplet state of the chromophore and if the coupling is larger than the difference in the precession frequencies of the doublet and triplet, the eigenstates of the coupled system are quartet and doublet states. The quartet state is usually the lowest energy excited state. Following light excitation, the initial electronic relaxation to the quartet state generates strong multiplet polarization if it is governed by the spin–orbit coupling that follows the molecular symmetry. It is shown that application of a selective π-pulse to the ±3/2 ↔ ±1/2 transitions of the quartet converts this multiplet polarization into net polarization. The magnitude and orientation dependence of the generated polarization is estimated on the basis of a simple analytical model. The experimental conditions required for this net polarization to be retained in the ground state after decay of the quartet state are discussed. The viability of using this as a method to enhance the signal strength of a spin label or metal center in selective excitation experiments is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Maly, G.T. Debelouchina, V.S. Bajaj, K.N. Hu, C.G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)

    Article  ADS  Google Scholar 

  2. T. Prisner, W. Kockenberger, Appl. Magn. Reson. 34, 213–218 (2008)

    Article  Google Scholar 

  3. R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. Lopez-Serrano, D.C. Williamson, Science 323, 1708–1711 (2009)

    Article  ADS  Google Scholar 

  4. P.J. Hore, R.W. Broadhurst, Prog. Nucl. Magn. Reson. Spectrosc. 25, 345–402 (1993)

    Article  Google Scholar 

  5. L.T. Kuhn, J. Bargon, Top. Curr. Chem. 276, 125–154 (2007)

    Google Scholar 

  6. J. Matysik, A. Diller, E. Roy, A. Alia, Photosyn. Res. 102, 427–435 (2009)

    Article  Google Scholar 

  7. D. Raftery, Annu. Rep. NMR Spectrosc. 57, 205–270 (2006)

  8. N.J. Turro, I.V. Khudyakov, Res. Chem. Intermed. 25, 505–529 (1999)

    Article  Google Scholar 

  9. J.R. Woodward, Prog. React. Kinet. 27, 165–207 (2002)

    Google Scholar 

  10. H.J. Hayashi, Chin. Chem. Soc. 49, 137–160 (2002)

    Google Scholar 

  11. A.L. Buchachenko, V.L. Berdinsky, Chem. Rev. 102, 603–612 (2002)

    Article  Google Scholar 

  12. C.T. Rodgers, Pure Appl. Chem. 81, 19–43 (2009)

    Article  Google Scholar 

  13. A. Schnegg, A.A. Dubinskii, M.R. Fuchs, Y.A. Grishin, E.P. Kirilina, W. Lubitz, M. Plato, A. Savitsky, K. Mobius, Appl. Magn. Reson. 31, 59–98 (2007)

    Article  Google Scholar 

  14. A. van der Est, Photosyn. Res. 102, 335–347 (2009)

    Article  Google Scholar 

  15. K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, Spin Polarization and Magnetic Effects in Radical Reactions (Elsevier, Amsterdam, 1984)

    Google Scholar 

  16. J.P. Klare, H.J. Steinhoff, Photosyn. Res. 102, 377–390 (2009)

    Article  Google Scholar 

  17. A.D. Milov, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 15, 107–143 (1998)

    Article  Google Scholar 

  18. R.G. Larsen, D.J. Singel, J. Chem. Phys. 98, 5134–5146 (1993)

    Article  ADS  Google Scholar 

  19. L.V. Kulik, S.A. Dzuba, I.A. Grigoryev, Y.D. Tsvetkov, Chem. Phys. Lett. 343, 315–324 (2001)

    Article  ADS  Google Scholar 

  20. L.J. Berliner, S.S. Eaton, G.R. Eaton (eds.), Distance Measurements in Biological Systems by EPR (Kluwer, New York, 2000)

  21. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, UK, 2001)

    Google Scholar 

  22. O. Schiemann, T.F. Prisner, Q. Rev. Biophys. 40, 1–53 (2007)

    Article  Google Scholar 

  23. K. Möbius, A. Savitsky, High Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States (RSC Publishing, Cambridge, 2009)

    Google Scholar 

  24. J.E. Lovett, A.M. Bowen, C.R. Timmel, M.W. Jones, J.R. Dilworth, D. Caprotti, S.G. Bell, L.L. Wong, J. Harmer, Phys. Chem. Chem. Phys. 11, 6840–6848 (2009)

    Article  Google Scholar 

  25. V.P. Denysenkov, T.F. Prisner, J. Stubbe, M. Bennati, Proc. Natl. Acad. Sci. USA 103, 13386–13390 (2006)

    Article  ADS  Google Scholar 

  26. D. Margraf, B.E. Bode, A. Marko, O. Schiemann, T.F. Prisner, Mol. Phys. 105, 2153–2160 (2007)

    Article  ADS  Google Scholar 

  27. Y. Polyhach, A. Godt, C. Bauer, G. Jeschke, J. Magn. Res. 185, 118–129 (2007)

    Article  ADS  Google Scholar 

  28. M.M. Hertel, V.P. Denysenkov, M. Bennati, T.F. Prisner, Magn. Reson. Chem. 43, S248–S255 (2005)

    Article  Google Scholar 

  29. V.P. Denysenkov, D. Biglino, W. Lubitz, T.F. Prisner, M. Bennati, Angew. Chem. Int. Ed. 47, 1224–1227 (2008)

    Article  Google Scholar 

  30. A. Savitsky, A.A. Dubinskii, M. Flores, W. Lubitz, K. Mobius, J. Phys. Chem. B 111, 6245–6262 (2007)

    Article  Google Scholar 

  31. C. Blattler, H. Paul, Res. Chem. Intermed. 16, 201–211 (1991)

    Article  Google Scholar 

  32. A. Kawai, K. Shibuya, J. Phys. Chem. A 106, 12305–12314 (2002)

    Article  Google Scholar 

  33. V.F. Tarasov, I.A. Shkrob, A.D. Trifunac, J. Phys. Chem. A 106, 4838–4845 (2002)

    Article  Google Scholar 

  34. T. Suzuki, K. Maeda, T. Arai, K. Akiyama, S. Tero-Kubota, Mol. Phys. 101, 3341–3348 (2003)

    Article  ADS  Google Scholar 

  35. A. Kawai, Appl. Magn. Reson. 26, 213–221 (2004)

    Article  Google Scholar 

  36. L. Franco, M. Mazzoni, C. Corvaja, V.P. Gubskaya, L.S. Berezhnaya, I.A. Nuretdinov, Mol. Phys. 104, 1543–1550 (2006)

    Article  ADS  Google Scholar 

  37. V. Rozenshtein, A. Berg, H. Levanon, Appl. Magn. Reson. 37, 567–580 (2010)

    Article  Google Scholar 

  38. V. Rozenshtein, A. Berg, E. Stavitski, H. Levanon, L. Franco, C. Corvaja, J. Phys. Chem. A 109, 11144–11154 (2005)

    Article  Google Scholar 

  39. V. Rozenshtein, A. Berg, H. Levanon, U. Krueger, D. Stehlik, Y. Kandrashkin, A. van der Est, Israel J. Chem. 43, 373–381 (2003)

    Article  Google Scholar 

  40. Y.E. Kandrashkin, M.S. Asano, A. van der Est, J. Phys. Chem. A 110, 9607–9616, 9617–9626 (2006)

    Article  Google Scholar 

  41. C. Corvaja, L. Franco, A. Toffoletti, Appl. Magn. Reson. 7, 257–269 (1994)

    Article  Google Scholar 

  42. S. Yamauchi, Bull. Chem. Soc. Jpn. 77, 1255–1268 (2004)

    Article  Google Scholar 

  43. L. Franco, M. Mazzoni, C. Corvaja, V.P. Gubskaya, L.S. Berezhnaya, I.A. Nuretdinov, Appl. Magn. Reson. 30, 577–590 (2006)

    Article  Google Scholar 

  44. K. Ishii, J. Fujisawa, Y. Ohba, S. Yamauchi, J. Am. Chem. Soc. 118, 13079–13080 (1996)

    Article  Google Scholar 

  45. P.K. Poddutoori, M. Pilkington, A. Alberola, V. Polo, J.E. Warren, A. van der Est, Inorg. Chem. 49, 3516–3524 (2010)

    Article  Google Scholar 

  46. V.S. Iyudin, Yu.E. Kandrashkin, V.K. Voronkova, V.S. Tyurin, E.N. Kirichenko, Appl. Magn. Reson. (2010). doi:10.1007/s00723-010-0184-2

  47. G. Jeschke, M. Pannier, A. Godt, H.W. Spiess, Chem. Phys. Lett. 331, 243–252 (2000)

    Article  ADS  Google Scholar 

  48. P.P. Borbat, J.H. Freed, Chem. Phys. Lett. 313, 145–154 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Sciences and Engineering Research Council, Canada, and was partly supported by a grant of the President of the Russian Federation for Support of Leading Scientific Schools nr. NSh-46267.2010.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri E. Kandrashkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandrashkin, Y.E., van der Est, A. Stimulated Electron Spin Polarization in Strongly Coupled Triplet–Doublet Spin Pairs. Appl Magn Reson 40, 189–204 (2011). https://doi.org/10.1007/s00723-011-0194-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0194-8

Keywords

Navigation