Applied Magnetic Resonance

, Volume 40, Issue 1, pp 37–46 | Cite as

Vortex Excitations Above T c in the Cuprate Superconductor Bi2Sr2Ca2Cu3O10 as Revealed by ESR

  • Yu. TalanovEmail author
  • L. Salakhutdinov
  • E. Giannini
  • R. Khasanov


Using electron spin resonance (ESR) technique we have obtained data evidencing the existence of magnetic vortices in high-temperature superconductors at temperatures above the critical one T c. We have studied magnetic excitations in Bi2Sr2Ca2Cu3O10 single crystals above T c with the method of surface spin decoration. The surface layer of diphenylpicrylhydrazyl was used as a sensitive probe of magnetic field distortions. The temperature dependence of the ESR signal parameters has indicated that far above T c the magnetic flux of a sample is affected by the superconducting order parameter fluctuations while close to T c its changes are due to vortex-type excitations.


Vortex Electron Spin Resonance DPPH Electron Spin Resonance Spectrum Electron Spin Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank G.B. Teitel’baum and G.G. Khaliullin for helpful discussions. The study was supported by the Russian Foundation for Basic Research under Grant No. 10-02-01056.


  1. 1.
    J.M. Harris, Z.X. Shen, P.J. White, D.S. Marshall, M.C. Schabel, J.N. Eckstein, I. Bozovic, Phys. Rev. B 54(22), R15665 (1996)CrossRefADSGoogle Scholar
  2. 2.
    G. Zheng, H. Ozaki, W. Clark, Y. Kitaoka, P. Kuhns, A. Reyes, W. Moulton, T. Kondo, Y. Shimakawa, Y. Kubo, Phys. Rev. Lett. 85(2), 405 (2000)CrossRefADSGoogle Scholar
  3. 3.
    A. Pourret, H. Aubin, J. Lesueur, C. Marrache-Kikuchi, L. Berge, L. Dumoulin, K. Behnia, Nat. Phys. 2, 683 (2006)CrossRefGoogle Scholar
  4. 4.
    H. Raffy, V. Toma, C. Murrills, Z.Z. Li, Physica C 460462, 851–853 (2007)CrossRefADSGoogle Scholar
  5. 5.
    C. Renner, B. Revaz, J.Y. Genoud, K. Kadowaki, O. Fischer, Phys. Rev. Lett. 80(1), 149 (1998)CrossRefADSGoogle Scholar
  6. 6.
    M. Franz, Nat. Phys. 3, 686 (2007)CrossRefGoogle Scholar
  7. 7.
    Z. Tešanović, Nat. Phys. 4, 408 (2008)Google Scholar
  8. 8.
    Y. Wang, L. Li, N.P. Ong, Phys. Rev. B 73, 024510 (2006)CrossRefADSGoogle Scholar
  9. 9.
    L. Li, Y. Wang, M.J. Naughton, S. Komiya, S. Ono, Y. Ando, N.P. Ong, J. Magn. Magn. Mater. 310, 460 (2007)CrossRefADSGoogle Scholar
  10. 10.
    J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, I. Bozovic, Nature 398, 221 (1999)CrossRefADSGoogle Scholar
  11. 11.
    M.N. Serbyn, M.A. Skvortsov, A.A. Varlamov, V. Galitski, Phys. Rev. Lett. 102, 067001 (2009)CrossRefADSGoogle Scholar
  12. 12.
    K. Michaeli, A.M. Finkel'stein, EPL 86, 27007 (2009)Google Scholar
  13. 13.
    B. Dóra, K. Maki, A. Ványolos A., Virosztek, Phys. Rev. B 63, 241102(R) (2003)Google Scholar
  14. 14.
    S. Tan, K. Levin, Phys. Rev. B 69, 064510 (2004)CrossRefADSGoogle Scholar
  15. 15.
    A.S. Alexandrov, V.N. Zavaritsky, Phys. Rev. Lett. 93(21), 217002 (2004)CrossRefADSGoogle Scholar
  16. 16.
    B. Rakvin, M. Požek, A. Dulčić, Solid State Commun. 72(2), 199 (1998)CrossRefGoogle Scholar
  17. 17.
    E. Giannini, V. Garnier, R. Gladyshevskii, R.F. Flükiger, Supercond. Sci. Technol. 17, 220 (2004)CrossRefADSGoogle Scholar
  18. 18.
    M. Požek, H.U. Habermeier, A. Maier, M. Mehring, Physica C 269, 61–70 (1996)CrossRefADSGoogle Scholar
  19. 19.
    A.A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957)Google Scholar
  20. 20.
    E.H. Brandt, Phys. Rev. B 54(6), 4246 (1996)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    R.I. Khasanov, Y.M. Vashakidze, Y.I. Talanov, Physica C 218(1–2), 51 (1993)CrossRefADSGoogle Scholar
  22. 22.
    Q. Li, M. Suenaga, L.N. Bulaevskii, T. Hikata, K. Sato, Phys. Rev. B 48(18), 13865 (1993)CrossRefADSGoogle Scholar
  23. 23.
    A. Pomar, M.V. Ramallo, J. Mosqueira, C. Torrón, F. Vidal, Phys. Rev. B 54(10), 7470 (1996)CrossRefADSGoogle Scholar
  24. 24.
    M. Kawabe, K. Masuda, J. Yamaguchi, J. Phys. Soc. Jpn. 25, 760 (1968)CrossRefADSGoogle Scholar
  25. 25.
    C. Kittel, Introduction to Solid State Physics, 4th edn. (Wiley, New York, 1971)Google Scholar
  26. 26.
    C.A. Bolle, P.L. Gammel, D.G. Grier, C.A. Murray, D.J. Bishop, D.B. Mitzi, A. Kapitulnik, Phys. Rev. Lett. 66(1), 112 (1991)CrossRefADSGoogle Scholar
  27. 27.
    A. Moser, H.J. Hug, I. Parashikov, B. Stiefel, O. Fritz, H. Thomas, A. Baratoff, H.J. Güntherodt, Phys. Rev. Lett. 74(10), 1847 (1995)CrossRefADSGoogle Scholar
  28. 28.
    K. Harada, T. Matsuda, H. Kasai, J.E. Bonevich, T. Yoshida, U. Kawabe, A. Tonomura, Phys. Rev. Lett. 71(20), 3371 (1993)CrossRefADSGoogle Scholar
  29. 29.
    A. Oral, J.C. Barnard, S.J. Bending, S. Ooi, H. Taoka, T. Tamegai, M. Henini, Phys. Rev. B 56(22), R14295 (1997)CrossRefADSGoogle Scholar
  30. 30.
    I. Iguchi, T. Yamaguchi, A. Sugimoto, Nature 412, 420 (2001)CrossRefADSGoogle Scholar
  31. 31.
    L. Li, Y. Wang, S. Komiya, S. Ono, Y. Ando, G.D. Gu, N.P. Ong, Phys. Rev. B 81, 054510 (2010)CrossRefADSGoogle Scholar
  32. 32.
    M.T. Pencarina, C.P. Poole, H.A. Farach, J. Phys. Chem. Solids 56, 301 (1995)CrossRefADSGoogle Scholar
  33. 33.
    C.P. Slichter, Principles of Magnetic Resonance, 2nd edn. (Springer, Berlin, 1980)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yu. Talanov
    • 1
    Email author
  • L. Salakhutdinov
    • 1
  • E. Giannini
    • 2
  • R. Khasanov
    • 3
  1. 1.Zavoisky Physical-Technical InstituteKazanRussia
  2. 2.Département de Physique de la Matière CondenséeUniversité de GenèveGenevaSwitzerland
  3. 3.Laboratory for Muon-Spin Spectroscopy, Paul Scherrer InstitutVilligenSwitzerland

Personalised recommendations