Skip to main content
Log in

EPR, Optical Absorption and Superposition Model Study of Fe3+-Doped Ammonium Dihydrogen Phosphate Single Crystals

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

X-band electron paramagnetic resonance (EPR) studies are carried out on Fe3+ ions doped in ammonium dihydrogen phosphate (ADP) single crystals at room temperature. The crystal field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations. The obtained values of spin Hamiltonian and zero-field parameters of the Fe3+ ion in ADP are: g = 1.994 ± 0.002, |D| = (220 ± 5) × 10−4 cm−1 and a = (640 ± 5) × 10−4 cm−1. On the basis of EPR data, the site symmetry of the Fe3+ ion in the crystal is discussed. The Fe3+ ion enters the lattice substitutionally replacing the NH4 + sites. The optical absorption of the crystal is also studied at room temperature in the wavelength range of 195–925 nm. The energy values of different orbital levels are calculated. The observed bands are assigned as transitions from the 6 A 1g (S) ground state to various excited quartet levels of the Fe3+ ion in a cubic crystalline field. From the observed band positions, Racah interelectronic repulsion parameters (B and C), cubic crystal field splitting parameter (D q ) and Trees correction are calculated. There values are: B = 970, C = 1,923, D q  = 1,380 cm−1 and α = 90 cm−1, respectively. On the basis of EPR and optical data, the nature of bonding in the crystal is discussed. The zero-field splitting (ZFS) parameters are also determined theoretically using B kq parameters estimated from the superposition model. The values of ZFS parameters thus obtained are |D| = (213 ± 5) × 10−4 cm−1 and |E| = (21 ± 5) × 10−4 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  2. B. Aktas, S. Guner, F. Yildiz, A. Nateprov, A. Siminel, L. Kulyuk, J. Magn. Magn. Mat. 258, 409 (2003)

    Article  ADS  Google Scholar 

  3. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

    Google Scholar 

  4. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications (Wiley, New York, 2000)

    Google Scholar 

  5. D. Xue, H. Ratajczak, J. Mol. Struct. Theochem 716, 207 (2005)

    Article  Google Scholar 

  6. F.B.I. Cook, M.J.A. Smith, J. Phys. C Solid State Phys. 7, 2353 (1974)

    Article  ADS  Google Scholar 

  7. C.O. Kappe, Eur. J. Med. Chem. 35, 1043 (2000)

    Article  Google Scholar 

  8. T. Kawano, K. Niimori, K. Hukuda, N. Fujita, J. Phys. Soc. Jpn. 29, 633 (1970)

    Article  ADS  Google Scholar 

  9. H.K. Diemer, E.J. Bijvank, H.W.D. Hartog, Phys. Stat. Sol. B 87, 697 (1978)

    Article  ADS  Google Scholar 

  10. A.A. Khan, W.H. Baur, Acta Crystallogr. B 29, 2721 (1973)

    Article  Google Scholar 

  11. A. Abragam, B. Bleaney, EPR of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  12. E. Feher, M. Weger, Bull. Am. Phys. Soc. 7, 29 (1962)

    Google Scholar 

  13. T. Sakudo, J. Phys. Soc. Jpn. 18, 1626 (1963)

    Article  ADS  Google Scholar 

  14. B. Bleaney, D.J.E. Ingram, Proc. Roy. Soc. A205, 336 (1951)

    ADS  Google Scholar 

  15. D.S. Schonland, Proc. Phys. Soc. 73, 788 (1959)

    Article  Google Scholar 

  16. C. Rudowicz, J. Chem. Phys. 83, 5192 (1985)

    Article  ADS  Google Scholar 

  17. R.C. Weast, in CRC Handbook of Chemistry and Physics, 58th edn. (CRC Press, Cleveland), pp. 1977–1978

  18. W.C. Zheng, S.Y. Wu, Phys. Stat. Sol. B 207, 429 (1998)

    Article  ADS  Google Scholar 

  19. D. Dong, K.X. Yu, G.J. Jun, W. Hui, Z.K. Wei, Phys. Rev. B 72, 073101–1 (2005)

    Google Scholar 

  20. Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954)

    Article  ADS  Google Scholar 

  21. W. Low, G. Rosengarten, J. Mol. Spectr. 12, 319 (1964)

    Article  ADS  Google Scholar 

  22. K.X. Yu, C.Z. Hou, Phys. Rev. B 36, 797 (1987)

    Article  ADS  Google Scholar 

  23. A.K. Mehra, J. Chem. Phys. 48, 4384 (1968)

    Article  ADS  Google Scholar 

  24. T.H. Yeom, S.H. Choh, M.L. Du, M.S. Jang, Phys. Rev. B 55, 3415 (1996)

    Article  ADS  Google Scholar 

  25. V. Sugitani, K. Tagawa, K. Kato, Miner. J. 87, 445 (1974)

    Google Scholar 

  26. Z.Y. Yang, J. Phys. Condens. Matter 12, 4091 (2000)

    Article  ADS  Google Scholar 

  27. W.L. Yu, M.G. Zhao, Phys. Rev. B 37, 9254 (1988)

    Article  ADS  Google Scholar 

  28. D.J. Newman, D.C. Pryce, W.A. Runciman, Am. Miner. 63, 1278 (1978)

    Google Scholar 

  29. G.Y. Shen, M.G. Zhao, Phys. Rev. B 30, 3691 (1984)

    Article  Google Scholar 

  30. Y.Y. Yeung, D.J. Newman, Phys. Rev. B 34, 2258 (1986)

    Article  ADS  Google Scholar 

  31. D.J. Newman, Adv. Phys. 20, 197 (1970)

    Article  ADS  Google Scholar 

  32. C.K. Jorgensen, Modern Aspects of Ligand Field Theory (North- Holland, Amsterdam, 1971), p. 305

    Google Scholar 

  33. M.G. Zhao, M.L. Du, G.Y. Sen, J. Phys. C Solid State Phys. 20, 5557 (1987)

    Article  ADS  Google Scholar 

  34. D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989)

    Article  ADS  Google Scholar 

  35. E. Siegel, K.A. Muller, Phys. Rev. B 20, 3587 (1979)

    Article  ADS  Google Scholar 

  36. G.G. Sie, J. Phys. C Solid State Phys. 21, 3917 (1988)

    Article  ADS  Google Scholar 

  37. T.H. Yeom, S.H. Choh, M.L. Du, J. Phys. Condens. Matter 5, 2017 (1993)

    Article  ADS  Google Scholar 

  38. A. Edgar, J. Phys. C Solid State Phys. 9, 4303 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Head of the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Powai, Mumbai for providing the facility of EPR spectrometer. S. P. is grateful to the Head of the Department, Department of Physics, University of Allahabad, Allahabad for providing departmental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kripal.

Appendix 1

Appendix 1

Expressions for K kq (θ, ϕ) [K kq = (−1)q K kq *]

k

q

K kq

2

0

3cos2θ − 1

2

1

\( - \left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\sqrt 6 \sin 2\theta \exp \left( { - i\phi } \right) \)

2

2

(1/2)\( \sqrt 6 \) sin2θ exp(−i2ϕ)

4

0

35cos4θ − 30cos2θ + 3

4

1

−2\( \sqrt 5 \) sinθ (7cos3θ − cosθ) exp(−iϕ)

4

2

\( \sqrt {10} \) sin2θ (7cos2θ − 1) exp(−i2ϕ)

4

3

−2\( \sqrt {35} \) sin3θ cosθ exp(−i3ϕ)

4

4

(1/2)\( \sqrt {70} \) sin4θ exp(−i4ϕ)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kripal, R., Pandey, S. EPR, Optical Absorption and Superposition Model Study of Fe3+-Doped Ammonium Dihydrogen Phosphate Single Crystals. Appl Magn Reson 38, 471–484 (2010). https://doi.org/10.1007/s00723-010-0144-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-010-0144-x

Keywords

Navigation