Skip to main content
Log in

EDESR and ODMR of Impurity Centers in Nanostructures Inserted in Silicon Microcavities

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We present the first findings of the new electrically and optically detected magnetic resonance technique [ED electron spin resonance (EDESR) and ODMR], which reveal single point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without application of an external cavity, as well as a high frequency source and recorder, and with measuring only the magnetoresistance (EDESR) and transmission (ODMR) spectra within the frameworks of the excitonic normal-mode coupling caused by the microcavities embedded in the Si-QW plane. The new resonant positive magnetoresistance data are interpreted here in terms of the interference transition in the diffusive transport of free holes, respectively, between the weak antilocalization regime in the region far from the ESR of a paramagnetic point defect located inside or near the conductive channel and the weak localization regime in the nearest region of the ESR of that defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. N.T. Bagraev, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, V.A. Mashkov, V.V. Romanov, T.N. Shelykh, Physica E 40, 1627 (2008)

    ADS  Google Scholar 

  2. N.T. Bagraev, W. Gehlhoff, L.E. Klyachkin, A.A. Kudryavtsev, A.M. Malyarenko, G.A. Oganesyan, D.S. Poloskin, V.V. Romanov, Physica C 468, 840 (2008)

    Article  ADS  Google Scholar 

  3. N.T. Bagraev, N.G. Galkin, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, J. Phys. Condens. Matter 20, 164202 (2008)

    Article  ADS  Google Scholar 

  4. N.T. Bagraev, A.D. Bouravleuv, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, V.V. Romanov, Physica B 340–342, 1078 (2003)

    Article  Google Scholar 

  5. N.T. Bagraev, A.D. Bouravleuv, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, V.V. Romanov, Phys. Stat. Sol. (c) 2, 783 (2005)

  6. J.P. Kotthaus, R. Ranvaud, Phys. Rev. B 15, 5758 (1977)

    Article  ADS  Google Scholar 

  7. N.T. Bagraev, W. Gehlhoff, L.E. Klyachkin, Solid State Phenom. 47–48, 589 (1995)

    Google Scholar 

  8. B.-X. Li, P.-L. Cao, D.-L. Que, Phys. Rev. B 61, 1685 (2000)

    Article  ADS  Google Scholar 

  9. N.T. Bagraev, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, W. Gehlhoff, Yu.I. Romanov, S.A. Rykov, Semiconductors 39, 716 (2005)

    Article  Google Scholar 

  10. N.T. Bagraev, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, W. Gehlhoff, V.K. Ivanov, I.A. Shelykh, Semiconductors 36, 439 (2002)

    Article  ADS  Google Scholar 

  11. A. Slaoui, E. Fogarassy, J.C. Muller, P. Siffert, J. Physique Colloq. C5 44, 65 (1983)

    Google Scholar 

  12. N.T. Bagraev, A.D. Bouravleuv, L.E. Klyachkin, A.M. Malyarenko, S.A. Rykov, Semiconductors 34, 700 (2000)

    Article  ADS  Google Scholar 

  13. R. Laiho, M.M. Afanasjev, M.P. Vlasenko, L.S. Vlasenko, Phys. Rev. Lett. 80, 1489 (1998)

    Article  ADS  Google Scholar 

  14. N.T. Bagraev, N.G. Galkin, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, I.A. Shelykh, J. Phys. Condens. Matter 18, L1 (2006)

    Article  ADS  Google Scholar 

  15. N.T. Bagraev, N.G. Galkin, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, I.A. Shelykh, Physica E 40, 1338 (2008)

    Article  ADS  Google Scholar 

  16. N.T. Bagraev, A.D. Bouravleuv, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, V.V. Romanov, Physica B 340–342, 1074 (2003)

    Article  Google Scholar 

  17. A.S. Alexandrov, J. Ranninger, Phys. Rev. B 24, 1164 (1981)

    Article  ADS  Google Scholar 

  18. A.S. Alexandrov, N.F. Mott, Rep. Prog. Phys. 57, 1197 (1994)

    Article  ADS  Google Scholar 

  19. V.L. Ginzburg, Phys. Lett. 13, 101 (1964)

    ADS  Google Scholar 

  20. A.I. Larkin, Yu.N. Ovchinnikov, Sov. Phys. JETP 47, 1136 (1964)

    MathSciNet  Google Scholar 

  21. P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)

    Article  ADS  Google Scholar 

  22. W.A. Little, Physica 55, 50 (1971)

    Article  ADS  Google Scholar 

  23. N.T. Bagraev, V.A. Mashkov, Solid State Commun. 51, 515 (1984)

    Article  ADS  Google Scholar 

  24. N.T. Bagraev, V.A. Mashkov, Solid State Commun. 65, 1111 (1988)

    Article  ADS  Google Scholar 

  25. M. Tinkham, Introduction to Superconductivity (Dover, New York, 1996)

    Google Scholar 

  26. I.A. Shelykh, M.A. Kulov, N.G. Galkin, N.T. Bagraev, J. Phys. Condens. Matter 19, 246207 (2007)

    Article  ADS  Google Scholar 

  27. M. Rosenau Da Costa, I.A. Shelykh, N.T. Bagraev, Phys. Rev. B 76, 201302R (2007)

  28. H.H.P.Th. Bekman, T. Gregorkiewicz, C.A.J. Ammerlaan, Phys. Rev. Lett. 61, 227 (1988)

    Google Scholar 

  29. W. Gehlhoff, K. Irmscher, N.T. Bagraev, L.E. Klyachkin, A.M. Malyarenko, in Shallow Level Centres in Semiconductors, ed. by C.A.J. Ammerlaan, B. Pajot (World Scientific, Singapore, 1997), p. 227

    Google Scholar 

  30. Yu.V. Gorelkinskii, N.N. Nevinnyi, Physica B 170, 155 (1991)

    Google Scholar 

  31. C.A.J. Ammerlaan, P.T. Huy, Solid State Phenom. 85–86, 353 (2002)

    Article  Google Scholar 

  32. J.D. Carey, R.C. Barklie, J.F. Donegan, Phys. Rev. B 59, 2773 (1999)

    Article  ADS  Google Scholar 

  33. R. Kubo, K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954)

    Article  ADS  Google Scholar 

  34. R. Kubo, J. Phys. Soc. Jpn. 9, 935 (1954)

    Article  ADS  Google Scholar 

  35. E.C. Lightowlers, A.N. Safonov, Mater. Sci. Forum 258, 617 (1997)

    Article  Google Scholar 

  36. S. Ghatnekar-Nilsson, M. Kleverman, P. Emanuelsson, H.G. Grimmeiss, Semicond. Sci. Technol. 8, 1857–1861 (1993)

    Article  ADS  Google Scholar 

  37. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  38. G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch, Rev. Mod. Phys. 71, 1591 (1999)

    Article  ADS  Google Scholar 

  39. A. Mainwood, Mater. Sci. Forum 258, 253 (1997)

    Article  Google Scholar 

  40. A.N. Safonov, E.C. Lightowlers, Mater. Sci. Forum 258, 259 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Programme of Fundamental Studies of the Presidium of the Russian Academy of Sciences “Quantum Physics of Condensed Matter” (grant 9.12), Programme of the Swiss National Science Foundation (grant IZ73Z0_127945/1) and the Federal Targeted Programme on Research and Development in Priority Areas for the Russian Science and Technology Complex in 2007–2012 (contract no. 02.514.11.4074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Bagraev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagraev, N.T., Mashkov, V.A., Danilovsky, E.Y. et al. EDESR and ODMR of Impurity Centers in Nanostructures Inserted in Silicon Microcavities. Appl Magn Reson 39, 113–135 (2010). https://doi.org/10.1007/s00723-010-0141-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-010-0141-0

Keywords

Navigation