Skip to main content
Log in

Application of the SCVT Orientation Grid to the Simulation of CW EPR Powder Spectra

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The orientation grid obtained using the spherical centroidal Voronoi tessellation (SCVT) method is assessed for the simulation of continuous-wave electron paramagnetic resonance (CW EPR) powder spectra. The SCVT spherical code presents less distorted Voronoi cells associated to the points of the grid compared to the regular Igloo, SOPHE and EasySpin grids and similar distortions of the cells to the irregular Repulsion grid. The degree of distribution of the SCVT cells’ areas is smaller than for SOPHE, but higher than for the Igloo and Repulsion grids. All compared spherical codes have nearly the same electrostatic potential energy. Simulated CW EPR powder spectra for rhombic systems of spin S = 1/2 are similar when using the energy minimization SCVT and Repulsion spherical codes and show less intense ripples than the spectra calculated with the SOPHE and Igloo grids, but more intense than those obtained using the EasySpin grid. The classical projection method and a new modified form involving the spectral intensities at the orientations of the grid have been tested for the attenuation of the simulation noise, for grids of relatively reduced size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F.K. Kneubühl, J. Chem. Phys. 33, 1074–1078 (1960)

    Article  ADS  Google Scholar 

  2. V. Beltrán-López, B. Mile, C.C. Rowlands, J. Chem. Soc. Farad. Trans. 92, 2303–2310 (1996)

    Article  Google Scholar 

  3. V. Beltrán-López, Mol. Phys. Rep. 26, 25–38 (1999)

    Google Scholar 

  4. A. Ponti, J. Magn. Reson. 138, 288–297 (1999)

    Article  ADS  Google Scholar 

  5. M. Bak, N.C. Nielsen, J. Magn. Reson. 125, 181–190 (1997)

    Article  Google Scholar 

  6. S. Stoll, Ph.D. Thesis, ETH Zurich, Switzerland, 2003

  7. M.C.M. Gribnau, J.L.C. van Tits, E.J. Reijerse, J. Magn. Reson. 90, 474–485 (1990)

    Google Scholar 

  8. A. Kreiter, J. Hüttermann, J. Magn. Reson. 93, 12–26 (1991)

    Google Scholar 

  9. S. Galindo, L. Gonzáles-Tovany, J. Magn. Reson. 44, 250–254 (1981)

    Google Scholar 

  10. D.W. Alderman, M.S. Solum, D.M. Grant, J. Chem. Phys. 84, 3717–3725 (1986)

    Article  ADS  Google Scholar 

  11. D. Wang, G.R. Hanson, J. Magn. Reson. A 117, 1–8 (1995)

    Article  MATH  Google Scholar 

  12. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  13. M.J. Mombourquette, J.A. Weil, J. Magn. Reson. 99, 37–44 (1992)

    Google Scholar 

  14. J.M. Koons, E. Hughes, H.M. Cho, P.D. Ellis, J. Magn. Reson. A 114, 12–23 (1995)

    Article  Google Scholar 

  15. Q. Du, M.D. Gunzburger, L. Ju, SIAM J. Sci. Comput. 24, 1488–1506 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Q. Du, M.D. Gunzburger, L. Ju, Comput. Methods Appl. Mech. Eng. 192, 3933–3957 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Q. Du, V. Faber, M. Gunzburger, SIAM Rev. 41, 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Burkardt, M. Gunzburger, J. Peterson, R. Brannon, Technical Report: SAND2002-0099, Sandia National Laboratories, February 2002

  19. Q. Du, M. Emelianenko, Numer. Linear Algebra Appl. 13, 173–192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Ju, Q. Du, M. Gunzburger, Parallel Comput. 28, 1477–1500 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Bak, J.T. Rasmussen, N.C. Nielsen, J. Magn. Reson. 147, 296–330 (2000)

    Article  ADS  Google Scholar 

  22. R. Renka, ACM Trans. Math. Soft. 23, 416–434 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. M.J. Nilges, Ph.D. Thesis, University of Illinois, Urbana, Illinois, 1979

  24. J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990), pp. 222–229

    Google Scholar 

  25. H. Ebert, J. Abart, J. Voitländer, J. Chem. Phys. 79, 4719–4723 (1983)

    Article  ADS  Google Scholar 

  26. G.R. Hanson, K.E. Gates, C.J. Noble, M. Griffin, A. Mitchell, S. Benson, J. Inorg. Biochem. 98, 903–916 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Suggestions of an anonymous reviewer regarding the modified projection method are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Craciun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craciun, C. Application of the SCVT Orientation Grid to the Simulation of CW EPR Powder Spectra. Appl Magn Reson 38, 279–293 (2010). https://doi.org/10.1007/s00723-010-0129-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-010-0129-9

Keywords

Navigation